Optical vortex with multi-fractional orders

PLUTO / PLUTO-2 Spatial Light Modulators
Higher Order Modes / Optical Vortex / OAM Optical Communication
Published on:
Authors: Juntao Hu, Yuping Tai, Liuhao Zhu, Zixu Long, Miaomiao Tang, Hehe Li, Xinzhong Li and Yangjian Cai
Abstract:

“Recently, optical vortices (OVs) have attracted substantial attention because they can provide an additional degree of freedom, i.e., orbital angular momentum (OAM). It is well known that the fractional OV (FOV) is interpreted as a weighted superposition of a series of integer OVs containing different OAM states. However, methods for controlling the sampling interval of the OAM state decomposition and determining the selected sampling OAM state are lacking. To address this issue, in this Letter, we propose a FOV by inserting multiple fractional phase jumps into whole phase jumps (2π), termed as a multi-fractional OV (MFOV). The MFOV is a generalized FOV possessing three adjustable parameters, including the number of azimuthal phase periods (APPs), N; the number of whole phase jumps in an APP, K; and the fractional phase jump, α. The results show that the intensity and OAM of the MFOV are shaped into different polygons based on the APP number. Through OAM state decomposition and OAM entropy techniques, we find that the MFOV is constructed by sparse sampling of the OAM states, with the sampling interval equal to N. Moreover, the probability of each sampling state is determined by the parameter α, and the state order of the maximal probability is controlled by the parameter K, as K * N. This work presents a clear physical interpretation of the FOV, which deepens our understanding of the FOV and facilitates potential applications, especially for multiplexing technology in optical communication based on OAM._x000D_
This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 11974102, 11525418, 91750201, and 11974218), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, CAS (No. SKLST201901), the Innovation Group of Jinan under Grant No. 2018GXRC010, and the National key Research and Development Project of China (2019YFA0705000).”

Restricted Access

Publication: Applied Physics Letters
Issue/Year: Appl. Phys. Lett. Volume:116 (2020)
DOI: 10.1063/5.0004692
Link: https://doi.org/10.1063/5.0004692

Related Papers

PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Treerathat Chomchok, Pemika Hirankittiwong, Apichart Pattanaporkratana, Bussayamas Phettong, Natthawat Hongkanchanakul, Pongthep Prajongtat, Tyler R. Hatch, Dharmendra Pratap Singh, and Nattaporn Chattham

Rotation of liquid crystal microdroplets in the intensity minima of an optical vortex beam

Applications: Higher Order Modes / Optical Vortex / OAM,Optical Trapping /-Tweezers
LETO / LETO-3 Spatial Light Modulators
Authors:Zheng Yuan, Chenchen Zhang, Yuan Gao, Wenxiang Yan, Xian Long, Zhi-Cheng Ren, Xi-Lin Wang, Jianping Ding, and Hui-Tian Wang

Dual-curvilinear beam enabled tunable manipulation of high- and low-refractive-index particles

Applications: Higher Order Modes / Optical Vortex / OAM,Optical Trapping /-Tweezers
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Juntao Hu, Wenjun Wei, Xinzhong Li, and Yixian Qian

Generation of polygonal non-diffracting beams via angular spectral phases

Applications: Beam Shaping / Beam Steering,Higher Order Modes / Optical Vortex / OAM,Microscopy
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:M. P. Morales Rodríguez, E. García Herrera, O. Magaña Loaiza, B. Perez-Garcia, F. Marroquín Gutíerrez, B. M. Rodríguez-Lara

Spatial light mode analogues of generalized quantum coherent states

Applications: Beam Shaping / Beam Steering,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Tong Zhou, Yuchao Hong, Jiantai Dou, Jiaqing Xu, Bo Li, Youyou Hu

Generation of multiple rotationally-symmetric power-exponent-phase vortex beams on a spatial arbitrary distribution by using holographic phase control techniques

Applications: Adaptive Optics / Wavefront Control,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Siyu Gao, Xiaoyun Liu, Yonghao Chen, Jinyang Jiang, Ying Liu, Tengfei Chai and Yueqiu Jiang

Oceanic turbulence parameters recognition based on convolutional neural network

Applications: Adaptive Optics / Wavefront Control,Deep Learning / Neuronal Network,Optical Communication
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Bohnishikha Ghosh, Anat Daniel, Bernard Gorzkowski, Aleksandr Y. Bekshaev, Radek Lapkiewicz, and Konstantin Y. Bliokh

Canonical and Poynting currents in propagation and diffraction of structured light: tutorial

Applications: Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Dotan Halevi, Boaz Lubotzky, Kfir Sulimany, Eric G. Bowes, Jennifer A. Hollingsworth, Yaron Bromberg, Ronen Rapaport

High-dimensional quantum key distribution using orbital angular momentum of single photons from a colloidal quantum dot at room temperature

Applications: Higher Order Modes / Optical Vortex / OAM,Optical Communication,Optical Computing / Quantum Optics
GAEA / GAEA-2 Spatial Light Modulators
Authors:Wenxiang Yan, Yuan Gao, Zheng Yuan, Xian Long, Zhaozhong Chen, Zhi-Cheng Ren, Xi-Lin Wang, Jianping Ding, and Hui-Tian Wang

Energy-flow-reversing dynamics in vortex beams: OAM-independent propagation and enhanced resilience

Applications: Beam Shaping / Beam Steering,Higher Order Modes / Optical Vortex / OAM
GAEA / GAEA-2 Spatial Light Modulators
Authors:Xiaofei Li, Xin Liu, Quanying Wu, Jun Zeng, Yangjian Cai, Sergey A. Ponomarenko, Chunhao Liang

Prime number factorization with light beams carrying orbital angular momentum

Applications: Deep Learning / Neuronal Network,Digital-/ Computer Holography/ CGH,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:S. R. Thapa, S. Smith-Dryden, Z. Zhu, S. S. Pang and G. Li

Experimental Demonstration and Characterization of a Non-Mode Selective (De)Multiplexer Using Multi-Plane Light Converter (MPLC)

Applications: Optical Communication,Optical Computing / Quantum Optics
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Shuo Liu, Yi Zheng, Huiming Xiao, Shengxiang Shan, Xuejuan Liu, Sohail Ahmad, Anwar Manzoor Rana, Shubo Cheng, Wenxing Yang, Shaohua Tao

Generation of a controllable multi-spiral beam by using the modulated helico-conical phases

Applications: Beam Shaping / Beam Steering,Higher Order Modes / Optical Vortex / OAM,Optical Trapping /-Tweezers
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Zhipeng Yu, Huanhao Li, Wannian Zhao, Po-Sheng Huang, Yu-Tsung Lin, Jing Yao, Wenzhao Li, Qi Zhao, Pin Chieh Wu, Bo Li, Patrice Genevet, Qinghua Song & Puxiang Lai

High-security learning-based optical encryption assisted by disordered metasurface

Applications: Optical Communication,Optical Computing / Quantum Optics
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Pan, Tuqiang / Ye, Jianwei / Liu, Haotian / Zhang, Fan / Xu, Pengbai / Xu, Ou / Xu, Yi / Qin, Yuwen

Non-orthogonal optical multiplexing empowered by deep learning

Applications: Complex Modulation,Deep Learning / Neuronal Network,Optical Communication
GAEA / GAEA-2 PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Fang, Xinyuan / Hu, Xiaonan / Li, Baoli / Su, Hang / Cheng, Ke / Luan, Haitao / Gu, Min

Orbital angular momentum-mediated machine learning for high-accuracy mode-feature encoding

Applications: Deep Learning / Neuronal Network,Higher Order Modes / Optical Vortex / OAM
GAEA / GAEA-2 Spatial Light Modulators
Authors: Zhongzheng Lin, Weihang Zhong, Lixun Wu, Lin He, Hongjia Chen, Jianqi Hu, Yujie Chen, Siyuan Yu

Azimuthal beam shaping in orbital angular momentum basis

Applications: Beam Shaping / Beam Steering,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Nikhil Vangety, P.M. Pooja, Anirban Majee, Sourabh Roy

Learning-enabled recognition of LG beams from multimode fiber specklegrams

Applications: Higher Order Modes / Optical Vortex / OAM
GAEA / GAEA-2 Spatial Light Modulators
Authors:Han Gao, Haifeng Hu, and Qiwen Zhan

Generation and applications of spectral-spatially correlated principal mode in multimode fibers

Applications: Complex Modulation,Optical Communication
LETO / LETO-3 Spatial Light Modulators
Authors:Jian He, Jiahao Chen, Yimin Zhou, Yiqing Xu, Yongzhou Ni, Fei Wang, Yangjian Cai, and Guoquan Zhou

Realization of a circularly transformed Airyprime beam with powerful autofocusing ability

Applications: Bessel-/ Airy Beam Generation,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Olivier Emile and Janine Emile

Optical orbital angular momentum transfer to electronic currents

Applications: Higher Order Modes / Optical Vortex / OAM
GAEA / GAEA-2 Spatial Light Modulators
Authors:Kaibo Yang, Hao Luo, Yidan Zhang, Peng Li, Feng Wen, Yuzong Gu, Zhenkun Wu

Modulating and identifying an arbitrary curvilinear phased optical vortex array of high-order orbital angular momentum

Applications: Complex Modulation,Higher Order Modes / Optical Vortex / OAM,Optical Communication
GAEA / GAEA-2 Spatial Light Modulators
Authors:Jesper Glückstad, Andreas Erik Gejl Madsen

HoloTile Light Engine: New Digital Holographic Modalities and Applications

Applications: Adaptive Optics / Wavefront Control,Beam Shaping / Beam Steering,Materials Processing / Optical Fabrication,Optical Communication,Optical Trapping /-Tweezers
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Tianhong Wang, Viet Tran, Pascal Bassène, Edwin Fohtung, Trevor Rhone, and Moussa N’Gom

Adaptive methods of generating complex light arrays

Applications: Bessel-/ Airy Beam Generation,Complex Modulation,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Edgar Medina-Segura, Francisco I Mecillas-Hernández, Thomas Konrad, Carmelo Rosales-Guzmán and Benjamin Perez-Garcia

Violation of Bell’s inequality for helical Mathieu–Gauss vector modes

Applications: Higher Order Modes / Optical Vortex / OAM,Optical Computing / Quantum Optics,Polarization Generation