We use the spatial degree of freedom of light modes to construct optical analogues of generalized quantum coherent states for Hermite- and Laguerre-Gauss modes. Our optical analogues preserve the statistical properties of their quantum counterparts, encoded in their amplitude and phase distributions. We explore three basic symmetries that provide generalized displaced, rotated, and squeezed coherent states. Given the substantial interest in squeezed states for probing matter, we believe that the optical analogues introduced here have significant implications for optical sensing. Specifically, the single-particle nature of our spatial modes makes them robust candidates for sensing photosensitive materials. Overall, our approach opens the door to optical metrology and sensing protocols that mimic those already existing in the quantum realm, and facilitates further exploration of the quantum state zoo through classical optical analogues.
Open Access
HOLOEYE Photonics AG
Volmerstrasse 1
12489 Berlin, Germany
Phone: +49 (0)30 4036 9380
Fax: +49 (0)30 4036 938 99
contact@holoeye.com
© 2023 HOLOEYE Photonics AG