Authors: Wilm, Tobias; Wieland, Max; Fiess, Reinhold & Stork, Wilhelm
Abstract: “We present highly transparent, wave front printed volume holographic optical elements (vHOEs), realized with a new recording method based on the pre-illumination of incoherent light patterns. The introduced amplitudemodulated pattern illuminates a distinct area on the unexposed, photopolymer-based holographic recording material prior to the hologram recording sequence. The incoherent pre-illumination scheme enables a precise tuning of the material’s local photosensitivity without the formation of a holographic volume diraction grating. As a consequence, the pre-illumination exposure signicantly suppresses the formation of transparency diminishing structures in the material that are formed concurrently with the volume diraction grating during the hologram recording sequence. The pre-illumination component is integrated in an extended immersion-based wave front printing setup, which realizes vHOEs by sequentially recording single holographic elements in an array-like structure. A wide range of dierent recording congurations is enabled by our recording setup due to independent modulation of both wave fronts and the possibility to realize large o-axis recording angles. We introduce two hologram characterization methods, based on a diraction eciency and a slanted-edge method analysis, which are used to evaluate the implemented pre-illumination method and demonstrate signicant improvements to the see-through quality of the presented wave front recorded vHOEs.”
Restricted Access
Publication: Proc. SPIE 12445
Issue/Year: Proc. SPIE 12445, Practical Holography XXXVII: Displays, Materials, and Applications, 124450S, 2023