Abstract: “We report on a novel curvilinear optical vortex beam named twin curvilinear vortex beams (TCVBs) with intensity and phase distribution along a pair of two- or three-dimensional curves, both of which share the same shape and the same topological charge. The TCVBs also possess the character of perfect optical vortex, namely having a size independent of topological charge. We theoretically demonstrate that a TCVB rather than a single-curve vortex beam can be created by the Fourier transform of a cylindrically polarized beam. The behavior of TCVBs generated through our method is investigated by simulation and experiment, including interference experiments for identifying the vortex property of the TCVBs. The TCVBs may find applications in optical tweezers, such as trapping low refractive index particles in the dark region between two curves and driving them moving along the curvilinear trajectory.”
Open Access
Publication: Optics Express
Issue/Year: Optics Express, Volume 29; Number 9; Pages 14112; 2021
Authors:Tong Zhou, Yuchao Hong, Jiantai Dou, Jiaqing Xu, Bo Li, Youyou Hu
Generation of multiple rotationally-symmetric power-exponent-phase vortex beams on a spatial arbitrary distribution by using holographic phase control techniques