Energy-flow-reversing dynamics in vortex beams: OAM-independent propagation and enhanced resilience

GAEA / GAEA-2 Spatial Light Modulators
Beam Shaping / Beam Steering Higher Order Modes / Optical Vortex / OAM
Published on:
Authors: Wenxiang Yan, Yuan Gao, Zheng Yuan, Xian Long, Zhaozhong Chen, Zhi-Cheng Ren, Xi-Lin Wang, Jianping Ding, and Hui-Tian Wang
Abstract:

Since their discovery in the 1990s, vortex beams, known for their ability to carry orbital angular momentum (OAM), have found substantial applications in optical manipulation and high-dimensional classical and quantum information communication. However, their inherent diffraction in free space, resulting in OAM-dependent beam expansion, has constrained their utility in spatial mode multiplexing communication, fiber optic transmission, and particle manipulation. These domains necessitate vortex beams with OAM-independent propagation characteristics. Addressing this, we report an approach that employs the energy redistribution mechanism to reverse the radial energy flows of traditional vortex beams, thereby presenting iso-propagation vortex beams (IPVBs) with OAM-independent propagation dynamics. These IPVBs, attributed to their reversed radial energy flows, maintain resilience in diverse environments, from free space to challenging media, including sustaining their form post-damage, retaining consistent intensity in lossy media, and experiencing reduced modal scattering in atmospheric turbulence. Their unique features position IPVBs as promising candidates for applications in imaging, microscopy, optical communication, metrology, quantum information processing, and light-matter interactions. Case studies within optical communication reveal that the IPVB basis potentially unlocks a broader spectrum of data channels, enhancing information capacity over traditional spatial multiplexing techniques.

Open Access

Publication: Optica
Issue/Year: Optica 11, 531-541 (2024)
DOI: 10.1364/OPTICA.517474
Link: https://doi.org/10.1364/OPTICA.517474

Related Papers

LETO / LETO-3 Spatial Light Modulators
Authors:Manuel Hüpfel and Gerd Ulrich Nienhaus

Beam shaping in light-sheet microscopy: an experimental analysis

Applications: Beam Shaping / Beam Steering,Microscopy
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Dotan Halevi, Boaz Lubotzky, Kfir Sulimany, Eric G. Bowes, Jennifer A. Hollingsworth, Yaron Bromberg, Ronen Rapaport

High-dimensional quantum key distribution using orbital angular momentum of single photons from a colloidal quantum dot at room temperature

Applications: Higher Order Modes / Optical Vortex / OAM,Optical Communication,Optical Computing / Quantum Optics
GAEA / GAEA-2 Spatial Light Modulators
Authors:Xiaofei Li, Xin Liu, Quanying Wu, Jun Zeng, Yangjian Cai, Sergey A. Ponomarenko, Chunhao Liang

Prime number factorization with light beams carrying orbital angular momentum

Applications: Deep Learning / Neuronal Network,Digital-/ Computer Holography/ CGH,Higher Order Modes / Optical Vortex / OAM
LETO / LETO-3 Spatial Light Modulators
Authors:Jian He, Jiahao Chen, Yimin Zhou, Fei Wang, Yangjian Cai, and Guoquan Zhou

Realization of double uniform line self-focusing of elliptical Airyprime beams

Applications: Beam Shaping / Beam Steering,Bessel-/ Airy Beam Generation
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Shuo Liu, Yi Zheng, Huiming Xiao, Shengxiang Shan, Xuejuan Liu, Sohail Ahmad, Anwar Manzoor Rana, Shubo Cheng, Wenxing Yang, Shaohua Tao

Generation of a controllable multi-spiral beam by using the modulated helico-conical phases

Applications: Beam Shaping / Beam Steering,Higher Order Modes / Optical Vortex / OAM,Optical Trapping /-Tweezers
GAEA / GAEA-2 Spatial Light Modulators
Authors:Chen J, Yang C, Wang D, Wang K.

Optical Imaging Method of Synthetic-Aperture Radar for Moving Targets

Applications: Adaptive Optics / Wavefront Control,Beam Shaping / Beam Steering
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Zhuo Sun, Juntao Hu, Yishu Wang, Xinzhong Li, and Yixian Qian

Generation for high-dimensional caustics and artificially tailored structured caustic beams

Applications: Beam Shaping / Beam Steering
GAEA / GAEA-2 PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Fang, Xinyuan / Hu, Xiaonan / Li, Baoli / Su, Hang / Cheng, Ke / Luan, Haitao / Gu, Min

Orbital angular momentum-mediated machine learning for high-accuracy mode-feature encoding

Applications: Deep Learning / Neuronal Network,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Patrick Cameron, Baptiste Courme, Daniele Faccio, Hugo Defienne

Tutorial: Shaping the Spatial Correlations of Entangled Photon Pairs

Applications: Beam Shaping / Beam Steering,Imaging/ Image Processing,Optical Computing / Quantum Optics
GAEA / GAEA-2 Spatial Light Modulators
Authors: Zhongzheng Lin, Weihang Zhong, Lixun Wu, Lin He, Hongjia Chen, Jianqi Hu, Yujie Chen, Siyuan Yu

Azimuthal beam shaping in orbital angular momentum basis

Applications: Beam Shaping / Beam Steering,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Nikhil Vangety, P.M. Pooja, Anirban Majee, Sourabh Roy

Learning-enabled recognition of LG beams from multimode fiber specklegrams

Applications: Higher Order Modes / Optical Vortex / OAM
LETO / LETO-3 Spatial Light Modulators
Authors:Jian He, Jiahao Chen, Yimin Zhou, Yiqing Xu, Yongzhou Ni, Fei Wang, Yangjian Cai, and Guoquan Zhou

Realization of a circularly transformed Airyprime beam with powerful autofocusing ability

Applications: Bessel-/ Airy Beam Generation,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Claudio Conci, Laura Sironi, Emanuela Jacchetti, Davide Panzeri, Donato Inverso, Rebeca Martínez Vázquez, Roberto Osellame, Maddalena Collini, Giulio Cerullo, Giuseppe Chirico, Manuela Teresa Raimondi

In vivo label-free tissue histology through a microstructured imaging window

Applications: Beam Shaping / Beam Steering,Digital-/ Computer Holography/ CGH
PLUTO / PLUTO-2 Spatial Light Modulators
Authors: Sebastian Cremaschini Sebastian Cremaschini Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova, Italy More by Sebastian Cremaschini Orcidhttps://orcid.org/0000-0002-6416-5782 , Alberto Cattelan, Davide Ferraro, Daniele Filippi, Filippo Marinello, Alessio Meggiolaro, Matteo Pierno, Cinzia Sada, Annamaria Zaltron*, Paolo Umari*, and Giampaolo Mistura

Trifurcated Splitting of Water Droplets on Engineered Lithium Niobate Surfaces

Applications: Beam Shaping / Beam Steering,Optical Trapping /-Tweezers
LETO / LETO-3 Spatial Light Modulators
Authors: Siqing Dai, Andrei Kobitski, Amirhossein Barati Sedeh, Süheyla Eroğlu-Kayıkçı, Lennart Hilbert, and G. Ulrich Nienhaus

Photon-Efficient Aberration Correction for 3D-STED Imaging of Thick Biological Specimens Using Sensorless Adaptive Optics

Applications: Adaptive Optics / Wavefront Control,Beam Shaping / Beam Steering,Microscopy
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Olivier Emile and Janine Emile

Optical orbital angular momentum transfer to electronic currents

Applications: Higher Order Modes / Optical Vortex / OAM
GAEA / GAEA-2 Spatial Light Modulators
Authors:Kaibo Yang, Hao Luo, Yidan Zhang, Peng Li, Feng Wen, Yuzong Gu, Zhenkun Wu

Modulating and identifying an arbitrary curvilinear phased optical vortex array of high-order orbital angular momentum

Applications: Complex Modulation,Higher Order Modes / Optical Vortex / OAM,Optical Communication
LETO / LETO-3 Spatial Light Modulators
Authors:Jian He, Wensong Dan, Xiang Zang, Yimin Zhou, Fei Wang, Yangjian Cai, Guoquan Zhou

How to select the dimensionless radius to realize the strongest abruptly autofocusing ability of circular Airyprime beams

Applications: Beam Shaping / Beam Steering,Bessel-/ Airy Beam Generation
GAEA / GAEA-2 Spatial Light Modulators
Authors:Jesper Glückstad, Andreas Erik Gejl Madsen

HoloTile Light Engine: New Digital Holographic Modalities and Applications

Applications: Adaptive Optics / Wavefront Control,Beam Shaping / Beam Steering,Materials Processing / Optical Fabrication,Optical Communication,Optical Trapping /-Tweezers
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Tianhong Wang, Viet Tran, Pascal Bassène, Edwin Fohtung, Trevor Rhone, and Moussa N’Gom

Adaptive methods of generating complex light arrays

Applications: Bessel-/ Airy Beam Generation,Complex Modulation,Higher Order Modes / Optical Vortex / OAM
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Edgar Medina-Segura, Francisco I Mecillas-Hernández, Thomas Konrad, Carmelo Rosales-Guzmán and Benjamin Perez-Garcia

Violation of Bell’s inequality for helical Mathieu–Gauss vector modes

Applications: Higher Order Modes / Optical Vortex / OAM,Optical Computing / Quantum Optics,Polarization Generation
LETO / LETO-3 Spatial Light Modulators
Authors:Zheng Yuan, Chenchen Zhang, Yuan Gao, Wenxiang Yan, Zhi-Cheng Ren, Xi-Lin Wang, Jianping Ding, Hui-Tian Wang

Versatile manipulation of light- and dark- seeking particles on demand

Applications: Beam Shaping / Beam Steering,Optical Trapping /-Tweezers
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Li, Xing, Dan, Dan, Yu, Xianghua, Zhou, Yuan, Zhang, Yanan, Gao, Wenyu, Li, Manman, Xu, Xiaohao, Yan, Shaohui and Yao, Baoli

Concentric ring optical traps for orbital rotation of particles

Applications: Higher Order Modes / Optical Vortex / OAM,Optical Trapping /-Tweezers
PLUTO / PLUTO-2 Spatial Light Modulators
Authors:Zheyu Wu, Ran Gao, Sitong Zhou, Fei Wang, Zhipei Li, Huan Chang, Dong Guo, Xiangjun Xin, Qi Zhang, Feng Tian, Qiang Wu

Robust Super-Resolution Image Transmission Based on a Ring Core Fiber with Orbital Angular Momentum

Applications: Deep Learning / Neuronal Network,Higher Order Modes / Optical Vortex / OAM,Imaging/ Image Processing