“Direct observation of Gouy phase shift on an optical vortex was presented through investigating the intensity profiles of a modified LGpm beam with an asymmetric defect, around at the focal point. It was quantitatively found that the rotation profile of a modified LGpm beam manifests the Gouy phase effect where the rotation direction depends on only the sign of topological charge m. This profile measurement method by introducing an asymmetric defect is a simple and useful technique for obtaining the information of the Gouy phase shift, without need of a conventional interference method. In addition, the 3-dimernsional trajectory of the defect was found to describe a uniform straight line.”
Open Access
HOLOEYE Photonics AG
Volmerstrasse 1
12489 Berlin, Germany
Phone: +49 (0)30 4036 9380
Fax: +49 (0)30 4036 938 99
contact@holoeye.com
© 2025 HOLOEYE Photonics AG
You are currently viewing a placeholder content from Facebook. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Mapbox. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from OpenStreetMap. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from X. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More Information