Authors: Cao, Hongkun; Jin, Xin; Ai, Lingyu & Kim, Eun-Soo
Abstract: “In this article, a new type of Fourier spectrum-based novel look-up table (FS-NLUT) method is proposed for the faster generation of holographic video of three-dimensional (3-D) scenes. This proposed FS-NLUT method consists of principal frequency spectrums (PFSs) which are much smaller in size than the principal fringe patterns (PFPs) found in the conventional NLUT-based methods. This difference in size allows for the number of basic algebraic operations in the hologram generation process to be reduced significantly. In addition, the fully one-dimensional (1-D) calculation framework of the proposed method also allows for a significant reduction of overall hologram calculation time. In the experiments, the total number of basic algebraic operations needed for the proposed FS-NLUT method were found to be reduced by 81.23% when compared with that of the conventional 1-D NLUT method. In addition, the hologram calculation times of the proposed method, when implemented in the CPU and the GPU, were also found to be 60% and 66% faster than that of the conventional 1-D NLUT method, respectively. It was also confirmed that the proposed method implemented with two GPUs can generate a holographic video of a test 3-D scene in real-time (>24f/s).”
Open Access
Publication: Optics Express
Issue/Year: Optics Express, Volume 29; Number 24; Pages 39738; 2021