In this paper, we introduce a novel holographic foveated near-eye display, leveraging the capabilities of two reflective-type phase-modulating spatial light modulators (SLMs). Reconstructed holographic three-dimensional images are imaged with different magnifications by polarization optics, creating a peripheral and foveal holographic three-dimensional image. The core element of the proposed system is a geometric phase (GP) lens, having different optical power based on the circular polarization state of the incident light. The proposed optical system has a compact form factor because the GP lens has only a millimeter thickness and two SLMs can be placed very close to the polarizing beam splitter.
Restricted Access
You are currently viewing a placeholder content from Vimeo. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from YouTube. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Facebook. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Mapbox. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from OpenStreetMap. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from X. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More Information