“In this work, we apply homodyne detection to investigate the frequency-resolved photon statistics of a cw light field emitted by a driven-dissipative semiconductor system in real time. We demonstrate that studying the frequency dependence of the photon number noise allows us to distinguish intrinsic noise properties of the emitter from external noise sources such as mechanical noise while maintaining a sub-picosecond temporal resolution. We further show that performing postselection on the recorded data opens up the possibility to study rare events in the dynamics of the emitter. By doing so, we demonstrate that in rare instances, additional external noise may actually result in reduced photon number noise in the emission”
Open Access
You are currently viewing a placeholder content from Vimeo. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from YouTube. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Facebook. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Mapbox. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from OpenStreetMap. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from X. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More Information