Abstract: “Recently, spatial photonic Ising machines (SPIMs) have demonstrated the abilities to compute the Ising Hamiltonian of large-scale spin systems, with the advantages of ultrafast speed and high power efficiency. However, such optical computations have been limited to specific Ising models with fully connected couplings. Here we develop a wavelength-division multiplexing SPIM to enable programmable spin couplings and external magnetic fields as well for general Ising models. We experimentally demonstrate such a wavelength-division multiplexing SPIM with a single spatial light modulator, where the gauge transformation is implemented to eliminate the impact of pixel alignment. To show the programmable capability of general spin coupling interactions, we explore three spin systems: ± J models, Sherrington-Kirkpatrick models, and only locally connected J_1-J_2 models and observe the phase transitions among the spin-glass, the ferromagnetic, the paramagnetic and the stripe-antiferromagnetic phases. These results show that the wavelength-division multiplexing approach has great programmable flexibility of spin couplings and external magnetic fields, which provides the opportunities to solve general combinatorial optimization problems with large-scale and on-demand SPIM.”