“Structured light with spatial degrees of freedom (DoF) is considered a potential solution to address the unprecedented demand for data traffic, but there is a limit to effectively improving the communication capacity by its integer quantization. We propose a data transmission system using fractional mode encoding and deep-learning decoding. Spatial modes of Bessel-Gaussian beams separated by fractional intervals are employed to represent 8-bit symbols. Data encoded by switching phase holograms is efficiently decoded by a deep-learning classifier that only requires the intensity profile of transmitted modes. Our results show that the trained model can simultaneously recognize two independent DoF without any mode sorter and precisely detect small differences between fractional modes. Moreover, the proposed scheme successfully achieves image transmission despite its densely packed mode space. This research will present a new approach to realizing higher data rates for advanced optical communication systems.”
Open Access
HOLOEYE Photonics AG
Volmerstrasse 1
12489 Berlin, Germany
Phone: +49 (0)30 4036 9380
Fax: +49 (0)30 4036 938 99
contact@holoeye.com
© 2025 HOLOEYE Photonics AG
You are currently viewing a placeholder content from Facebook. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Mapbox. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from OpenStreetMap. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from X. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More Information