Abstract: “Quantitative phase imaging with high resolution remains a long-term pursuit of many biomedical applications. However, the performance of coherent imaging systems is challenged by the intensity-only measurement mechanism and the sampling limit of the pixels. In this work, we introduce an imaging system that achieves pixel super-resolution quantitative phase imaging based on modulation diversity. A programmable phase-only spatial light modulator is used to generate various phase modulation patterns to the wavefront, providing data diversity for phase recovery at subpixel resolution. The system requires no mechanical displacements, enabling high-speed image acquisition, providing a competitive approach to high-throughput quantitative phase imaging applications.”
Restricted Access
Publication: Proc. SPIE 12318
Issue/Year: Proc. SPIE 12318, Holography, Diffractive Optics, and Applications XII, 123180Q, 2022
Authors:Michael Flachhuber, Johannes Scheuchenpflug, Thomas Hilbert, Norbert Danz, Peter Schreiber, Leo M. Wilhelm, Markus Metz, Jean-Christope Olaya, Tobias Reusch
MaMeK: a wide-angle dynamic holographic projection system for human-vehicle communication