Authors: Wei Jia, Zhongyu Chen, Fung Jacky Wen, Changhe Zhou, Yuk Tak Chow, and Po Sheun Chung
Abstract: “We describe a simple technique for coaxial holographic image recording and reconstruction, employing a spatial light modulator (SLM) modified in pure phase mode. In the image encoding system, both the reference beam in the outside part and the signal beam in the inside part are displayed by an SLM based on the twisted nematic LCD. For a binary image, the part with amplitude of “1” is modulated with random phase, while the part with amplitude of “0” is modulated with constant phase. After blocking the dc component of the spatial frequencies, a Fourier transform (FT) hologram is recorded with a uniform intensity distribution. The amplitude image is reconstructed by illuminating the reference beam onto the hologram, which is much simpler than existing phase modulated FT holography techniques. The technique of coaxial holographic image encoding and recovering with pure phase modulation is demonstrated theoretically and experimentally in this paper. As the holograms are recorded without the high-intensity dc component, the storage density with volume medium may be increased with the increase of dynamic range. Such a simple modulation method will have potential applications in areas such as holographic encryption and high-density disk storage systems.”
Restricted Access
Publication: Applied Optics
Issue/Year: Applied Optics, Vol. 50, Issue 34, pp. H10-H15 (2011)
Authors:Michael Flachhuber, Johannes Scheuchenpflug, Thomas Hilbert, Norbert Danz, Peter Schreiber, Leo M. Wilhelm, Markus Metz, Jean-Christope Olaya, Tobias Reusch
MaMeK: a wide-angle dynamic holographic projection system for human-vehicle communication
Wavefront Sensing by a Common-Path Interferometer for Wavefront Correction in Phase and Amplitude by a Liquid Crystal Spatial Light Modulator Aiming the Exoplanet Direct Imaging