Abstract: “The control of structured waves has recently opened innovative scenarios in the perspective of radiation propagation, advanced imaging, and light-matter interaction. In information and communication technology, the spatial degrees of freedom offer a wider state space to carry many channels on the same frequency or increase the dimensionality of quantum protocols. However, spatial decomposition is much more arduous than polarization or frequency multiplexing, and very few practical examples exist. Among all, beams carrying orbital angular momentum gained a preeminent role, igniting a variety of methods and techniques to generate, tailor, and measure that property. In a more general insight into structured-phase beams, we introduce here a new family of wave fields having a multipole phase. These beams are devoid of phase singularities and described by two continuous spatial parameters which can be controlled in a practical and compact way via conformal optics. The outlined framework encompasses multiplexing, propagation, and demultiplexing as a whole for the first time, describing the evolution and transformation of wave fields in terms of conformal mappings. With its potentialities, versatility, and ease of implementation, this new paradigm introduces a novel playground for space division multiplexing, suggesting unconventional solutions for light processing and free-space communications.”
Open Access
Publication: Optics Express
Issue/Year: Optics Express, Volume 29; Number 23; Pages 38095; 2021