DE 820 Diffractive Optical Element

Element number: DE 820

Product revision: A

• Description: 1: 2 beam splitter

· Substrate material: fused silica

 AR coating on both sides of the substrate: R < 0.5% within recommended wavelength range

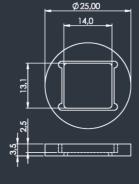
Substrate size: 15.0 mm x 14.1 mm

Thickness: 2.3 mm

Design wavelength: 1064 nm

Recommended wavelength range: 1030 nm / 1064 nm *

Typ. diffraction Efficiency: 79% at design wavelength


Within the recommended wavelength range, the zeroth order (Z0) has a significant lower power than the desired diffraction orders. Spot spacing and angular separation, and the ratio between zeroth order and desired orders will vary most with the wavelength. Diffraction efficiencies given on this datasheet have been measured using elements of product revision A.

The DOEs are best used with collimated or convergent laser sources. The microstructure surface should be oriented towards the laser. The 0-order spot is equivalent in size and shape to the original beam, but its power is attenuated.

Diffraction angles & efficiencies

Wavelength	Pattern Size @ 100 mm Distance	Pattern Angles
λ [nm]	a [mm]	α [°]
980	0.80	0.46
1030	0.84	0.48
1064	0.87	0.50

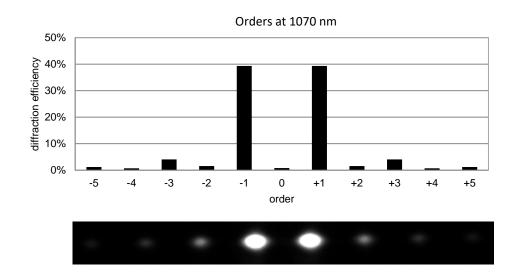
Table 1: Pattern size and pattern angle depending on the wavelength

For testing or setups under

laboratory conditions, we offer

a version mounted in a black

anodized 25 mm aluminum frame for use with standard


laboratory holders.

25 mm anodized aluminum mount with 14.0 x 13.1 mm clear aperture

CONVERGING LASER

The laser can be collimated for long-range use or converging for a fixed working distance.

Please note that the size/thickness of each spot or line depends on the focusing of the laser.

*the recommended wavelength range is defined with Z0≤2%

HOLOEYE Photonics AG Volmerstr. 1 12489 Berlin, Germany doe@holoeye.com www.holoeye.com