Non-spreading Bessel spatiotemporal optical vortices

Author(s):

Cao, Qian; Chen, Jian; Lu, Keyin; Wan, Chenhao; Chong, Andy & Zhan, Qiwen

Abstract:

“Non-spreading nature of Bessel spatiotemporal wavepackets is theoretically and experimentally investigated and orders of magnitude improvement in the spatiotemporal spreading has been demonstrated. The spatiotemporal confinement provided by the Bessel spatiotemporal wavepacket is further exploited to transport transverse orbital angular momentum through embedding spatiotemporal optical vortex into the Bessel spatiotemporal wavepacket, constructing a new type of wavepacket: Bessel spatiotemporal optical vortex. Both numerical and experimental results demonstrate that spatiotemporal vortex structure can be well maintained and confined through much longer propagation. High order spatiotemporal optical vortices can also be better confined in the spatiotemporal domain and prevented from further breaking up, overcoming a potential major obstacle for future applications of spatiotemporal vortex.”

Link to Publications Page

Publication: Science Bulletin
Issue/Year: Science Bulletin, 2021
DOI: 10.1016/j.scib.2021.07.031

Orbital-Angular-Momentum-Controlled Hybrid Nanowire Circuit

Author(s):

Ren, Haoran; Wang, Xiaoxia; Li, Chenhao; He, Chenglin; Wang, Yixiong; Pan, Anlian & Maier, Stefan A.

Abstract:

“Plasmonic nanostructures can enable compact multiplexing of the orbital angular momentum (OAM) of light; however, strong dissipation of the highly localized OAM-distinct plasmonic fields in the near-field region hinders on-chip OAM transmission and processing. Superior transmission efficiency is offered by semiconductor nanowires sustaining highly confined optical modes, but only the polarization degree of freedom has been utilized for their selective excitation. Here we demonstrate that incident OAM beams can selectively excite single-crystalline cadmium sulfide (CdS) nanowires through coupling OAM-distinct plasmonic fields into nanowire waveguides for long-distance transportation. This allows us to build an OAM-controlled hybrid nanowire circuit for optical logic operations including AND and OR gates. In addition, this circuit enables the on-chip photoluminescence readout of OAM-encrypted information. Our results open exciting new avenues not only for nanowire photonics to develop OAM-controlled optical switches, logic gates, and modulators but also for OAM photonics to build ultracompact photonic circuits for information processing.”

Link to Publications Page

Publication: Nano Letters
Issue/Year: Nano Letters, Volume 21; Number 14; Pages 6220–6227; 2021
DOI: 10.1021/acs.nanolett.1c01979

Toward simple, generalizable neural networks with universal training for low-SWaP hybrid vision

Author(s):

Muminov, Baurzhan; Perry, Altai; Hyder, Rakib; Asif, M. Salman & Vuong, Luat T.

Abstract:

“Speed, generalizability, and robustness are fundamental issues for building lightweight computational cameras. Here we demonstrate generalizable image reconstruction with the simplest of hybrid machine vision systems: linear optical preprocessors combined with no-hidden-layer, “small-brain” neural networks. Surprisingly, such simple neural networks are capable of learning the image reconstruction from a range of coded diffraction patterns using two masks. We investigate the possibility of generalized or “universal training” with these small brains. Neural networks trained with sinusoidal or random patterns uniformly distribute errors around a reconstructed image, whereas models trained with a combination of sharp and curved shapes (the phase pattern of optical vortices) reconstruct edges more boldly. We illustrate variable convergence of these simple neural networks and relate learnability of an image to its singular value decomposition entropy of the image. We also provide heuristic experimental results. With thresholding, we achieve robust reconstruction of various disjoint datasets. Our work is favorable for future real-time low size, weight, and power hybrid vision: we reconstruct images on a 15 W laptop CPU with 15,000 frames per second: faster by a factor of 3 than previously reported results and 3 orders of magnitude faster than convolutional neural networks.”

Link to Publications Page

Publication: Photonics Research
Issue/Year: Photonics Research, Volume 9; Number 7; Pages B253; 2021
DOI: 10.1364/prj.416614

Optical vortex lattice: an exploitation of orbital angular momentum

Author(s):

Zhu, Liuhao; Tang, Miaomiao; Li, Hehe; Tai, Yuping & Li, Xinzhong

Abstract:

“Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.”

Link to Publications Page

Publication: Nanophotonics
Issue/Year: Nanophotonics, Volume 10; Number 9; Pages 2487–2496; 2021
DOI: 10.1515/nanoph-2021-0139

Reconfigurable generation of double-ring perfect vortex beam

Author(s):

Du, Yafei; Liu, Deming; Fu, Songnian; Wang, Yuncai & Qin, Yuwen

Abstract:

“Perfect vortex beam (PVB), whose ring radius is independent of its topological charge, play an important role in optical trapping and optical communication. Here, we experimentally demonstrate the reconfigurable double-ring PVB (DR-PVB) generation with independent manipulations of the amplitude, the radius, the width, and the topological charge for each ring. Based on complex amplitude modulation (CAM) with a phase-only spatial light modulator (SLM), we successfully verify the proposed DR-PVB generation scheme via the computer-generated hologram. Furthermore, we carry out a quantitative characterization for the generated DR-PVB, in terms of both the generation quality and the generation efficiency. The correlation coefficients of various reconfigurable DR-PVBs are above 0.8, together with the highest generation efficiency of 44%. We believe that, the proposed generation scheme of reconfigurable DR-PVB is desired for applications in both optical tweezers and orbital angular momentum (OAM) multiplexing.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 29; Number 11; Pages 17353; 2021
DOI: 10.1364/oe.424664

Twin curvilinear vortex beams

Author(s):

Wang, Zhuang; Yuan, Zheng; Gao, Yuan; Yan, Wenxiang; Liang, Chunjuan; Ren, Zhi-Cheng; Wang, Xi-Lin; Ding, Jianping & Wang, Hui-Tian

Abstract:

“We report on a novel curvilinear optical vortex beam named twin curvilinear vortex beams (TCVBs) with intensity and phase distribution along a pair of two- or three-dimensional curves, both of which share the same shape and the same topological charge. The TCVBs also possess the character of perfect optical vortex, namely having a size independent of topological charge. We theoretically demonstrate that a TCVB rather than a single-curve vortex beam can be created by the Fourier transform of a cylindrically polarized beam. The behavior of TCVBs generated through our method is investigated by simulation and experiment, including interference experiments for identifying the vortex property of the TCVBs. The TCVBs may find applications in optical tweezers, such as trapping low refractive index particles in the dark region between two curves and driving them moving along the curvilinear trajectory.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 29; Number 9; Pages 14112; 2021
DOI: 10.1364/oe.423803

Direct axial plane imaging of particle manipulation with nondiffracting Bessel beams

Author(s):

An, Sha; Peng, Tong; Yan, Shaohui; Zhang, Peng; Li, Manman & Yao, Baoli

Abstract:

“Optical manipulation with nondiffracting beams has been attracting great interest and finding widespread applications in many fields such as chemistry, physics, and biomedicine. Generally, optical manipulation is conducted in an optical microscopy system, which, in general, only allows for imaging motions of particles in the transverse plane, rendering the observation of dynamics processes occurring in the axial plane impractical. We propose and demonstrate an optical manipulation system that incorporates an axial plane imaging module. With this system, the trapping behavior in the transverse plane and the transportation process in the axial plane of a particle immersed in a Bessel beam were acquired simultaneously in real time.”

Link to Publications Page

Publication: Applied Optics
Issue/Year: Applied Optics, Volume 60; Number 11; Pages 2974; 2021
DOI: 10.1364/ao.417854

Generation of Complex Transverse Energy Flow Distributions with Autofocusing Optical Vortex Beams

Author(s):

Khonina, Svetlana N.; Porfirev, Alexey P.; Ustinov, Andrey V. & Butt, Muhammad Ali

Abstract:

“Optical vortex (OV) beams are widely used for the generation of light fields with transverse energy flow inducing orbital motion of the nano- and microparticles in the transverse plane. Here, we present some new modifications of OV beams with autofocusing properties for shaping complex transverse energy flow distributions varying in space. The angular component of the complex amplitude of these beams is defined by the superpositions of OV beams with different topological charges. The proposed approach provides a convenient method to control the three-dimensional structure of the generated autofocusing OV beams. The control of the transverse distribution of an autofocusing beam provides a wide variety of generated fields with both rotating and periodic properties, which can be used in the field of laser manipulation and laser material processing. Thus, the obtained numerical results predict different types of motion of the trapped particles for the designed OV autofocusing beams. The experimental results agree with modeling results and demonstrate the principal possibility to shape such laser beams using spatial light modulators.”

Link to Publications Page

Publication: Micromachines
Issue/Year: Micromachines, Volume 12; Number 3; Pages 297; 2021
DOI: 10.3390/mi12030297

Tailored spectral rotation of vortex pulses by non-uniform spiral phase gratings

Author(s):

Liebmann, Max; Treffer, Alexander; Bock, Martin; Jurke, Mathias; Wallrabe, Ulrike & Grunwald, Rüdiger

Abstract:

“Previously we studied the spectral Gouy rotation as a specific rotational phenomenon of conical polychromatic light fields shaped by spiral gratings. The rotation of spectral anomalies around singularities results from accumulated spectrally dependent Gouy phase shift. We proposed to apply radially chirped spiral structures to obtain an axial modulation of the rotational characteristics. Here we present related experimental results with non-uniform spiral gratings which were programmed into a 10-Megapixel, phase-only, liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM). A propagation-dependent variation of the Gouy rotation was indicated. More complex non-uniform geometries are considered.”

Link to Publications Page

Publication: SPIE Proceedings, Complex Light and Optical Forces XV;
Issue/Year: Proc. SPIE 11701, Complex Light and Optical Forces XV, 117010V, 2021
DOI: 10.1117/12.2578503

Rotational Doppler effect detection by LG beams with a nonzero radial index

Author(s):

Qiu, Song; Ren, Yuan; Liu, Tong; Li, Zhimeng; Liu, Zhengliang; Wang, Chen; Ding, You & Sha, Qimeng

Abstract:

“The capability to detect the rotational speed of non-cooperative targets in a long distance is a difficult problem to be solved. In recent years, vortex light provides a feasible solution for the measurement of rotational speed for its spiral phase and the orbital angular momentum. Laguerre-Gaussian (LG) mode, as the typical vortex beam, has been widely employed in rotational Doppler effect (RDE) experiments. Here, we show that the nonzero radial index LG beam not only has a specific physical meaning but also can enhance the light intensity and the amplitude of RDE frequency signal relative to a zero radial index LG beam. To this end, we theoretically analyze the reason of intensity enhancement of a nonzero radial index beam and verify the conclusion in a variable control experiment. Our study provides a new aspect of LG beams that can be considered in rotational speed detection based on RDE. It may produce an improvement of the detection range of rotating targets in practical applications.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 29; Number 7; Pages 10275; 2021
DOI: 10.1364/oe.421705