Toward simple, generalizable neural networks with universal training for low-SWaP hybrid vision

Author(s):

Muminov, Baurzhan; Perry, Altai; Hyder, Rakib; Asif, M. Salman & Vuong, Luat T.

Abstract:

“Speed, generalizability, and robustness are fundamental issues for building lightweight computational cameras. Here we demonstrate generalizable image reconstruction with the simplest of hybrid machine vision systems: linear optical preprocessors combined with no-hidden-layer, “small-brain” neural networks. Surprisingly, such simple neural networks are capable of learning the image reconstruction from a range of coded diffraction patterns using two masks. We investigate the possibility of generalized or “universal training” with these small brains. Neural networks trained with sinusoidal or random patterns uniformly distribute errors around a reconstructed image, whereas models trained with a combination of sharp and curved shapes (the phase pattern of optical vortices) reconstruct edges more boldly. We illustrate variable convergence of these simple neural networks and relate learnability of an image to its singular value decomposition entropy of the image. We also provide heuristic experimental results. With thresholding, we achieve robust reconstruction of various disjoint datasets. Our work is favorable for future real-time low size, weight, and power hybrid vision: we reconstruct images on a 15 W laptop CPU with 15,000 frames per second: faster by a factor of 3 than previously reported results and 3 orders of magnitude faster than convolutional neural networks.”

Link to Publications Page

Publication: Photonics Research
Issue/Year: Photonics Research, Volume 9; Number 7; Pages B253; 2021
DOI: 10.1364/prj.416614

Broadband chromatic dispersion measurements in higher-order modes selectively excited in optical fibers using a spatial light modulator

Author(s):

Zolnacz, Kinga; Szatkowski, Mateusz; Masajada, Jan & Urbanczyk, Waclaw

Abstract:

“We propose an improvement of the interferometric method used up to now to measure the chromatic dispersion in single mode optical fibers, which enables dispersion measurements in higher-order modes over a wide spectral range. To selectively excite a specific mode, a spatial light modulator was used in the reflective configuration to generate an appropriate phase distribution across an input supercontinuum beam. We demonstrate the feasibility of the proposed approach using chromatic dispersion measurements of the six lowest order spatial modes supported by an optical fiber in the spectral range from 450 to 1600 nm. Moreover, we present the results of numerical simulations that confirm sufficient selectivity of higher-order mode excitation.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 29; Number 9; Pages 13256; 2021
DOI: 10.1364/oe.422736

WISHED: Wavefront imaging sensor with high resolution and depth ranging

Author(s):

Yicheng Wu, Fengqiang Li, Florian Willomitzer, Ashok Veeraraghavan, Oliver Cossairt

Abstract:

“Phase-retrieval based wavefront sensors have been shown to reconstruct the complex field from an object with a high spatial resolution. Although the reconstructed complex field encodes the depth information of the object, it is impractical to be used as a depth sensor for macroscopic objects, since the unambiguous depth imaging range is limited by the optical wavelength. To improve the depth range of imaging and handle depth discontinuities, we propose a novel three-dimensional sensor by leveraging wavelength diversity and wavefront sensing. Complex fields at two optical wavelengths are recorded, and a synthetic wavelength can be generated by correlating those wavefronts. The proposed system achieves high lateral and depth resolutions. Our experimental prototype shows an unambiguous range of more than 1,000 x larger compared with the optical wavelengths, while the depth precision is up to 9µm for smooth objects and up to 69µm for rough objects. We experimentally demonstrate 3D reconstructions for transparent, translucent, and opaque objects with smooth and rough surfaces.”

Link to Publications Page

Publication: 2020 IEEE International Conference on Computational Photography (ICCP)
DOI: 10.1109/ICCP48838.2020.9105280

Rapid phase calibration of a spatial light modulator using novel phase masks and optimization of its efficiency using an iterative algorithm

Author(s):

Amar Deo Chandra and Ayan Banerjee

Abstract:

“We develop an improved phase calibration method of a reflective SLM using interferometry by employing novel phase masks. In the process, we definitively determine the actual maximum phase throw of our SLM which provides a recipe for users to verify supplier specifications. We generate optimised phase masks by using Iterative Fourier Transform Algorithm (IFTA) and compare their performance with global linear corrections in the look-up table (LUT) and find that the former perform with around 20% better efficiency. Besides obtaining an array of 1D/2D spots having high uniformity (90%) using IFTA, our result exemplifies the use of iterative algorithms for improving efficiency of phase limited SLMs. Finally, our improved phase calibration method enables threefold faster phase measurements, and to the best of our knowledge, is the first endeavour directed towards enabling rapid phase characterisation of an SLM using interferometric measurements. We believe that it can have very useful applications in settings which may require fast phase calibrations as well as for real-time, multi-wavelength spectroscopic applications.”

Link to Publications Page

Publication: Journal of Modern Optics
Issue/Year: Volume 67- Issue 7
DOI: 10.1080/09500340.2020.1760954

Single-shot memory-effect video

Author(s):

Xiaohan Li and Andrew Stevens and Joel A. Greenberg and Michael E. Gehm

Abstract:

“Imaging through opaque scattering media is critically important in applications ranging from biological and astronomical imaging to metrology and security. While the random process of scattering in turbid media produces scattered light that appears uninformative to the human eye, a wealth of information is contained in the signal and can be recovered using computational post-processing techniques. Recent studies have shown that statistical correlations present in the scattered light, known as ‘memory effects’, allow for diffraction-limited imaging through opaque media without detailed knowledge of (or access to) the source or scatterer. However, previous methods require that the object and/or scatterer be static during the measurement. We overcome this limitation by combining traditional memory effect imaging with coded-aperture-based computational imaging techniques, which enables us to realize for the first time single-shot video of arbitrary dynamic scenes through dynamic, opaque media. This has important implications for a wide range of real-world imaging scenarios.”

Link to Publications Page

Publication: Scientific Reports
Issue/Year: Scientific Reports 8, Article number: 13402 (2018)
DOI: 10.1038/s41598-018-31697-8

Adaptive wavefront interferometry for unknown free-form surfaces

Author(s):

Shuai Xue, Shanyong Chen, Zhanbin Fan and Dede Zhai

Abstract:

“The primary problem of conventional wavefront interferometers is limited dynamic range. Unknown free-form surface figure error with large amplitude or slope is not measurable for too dense or invisible fringes. To troubleshoot this problem, we propose adaptive wavefront interferometry (AWI). AWI utilizes a wavefront sensor-less adaptive optics (AO) subsystem to intelligently speculate and compensate the unknown free-form surface figure error. In this subsystem, adaptive null optics is utilized to iteratively generate adaptive wavefronts to compensate the unknown severe surface figure error. The adaptive null optics is close-loop controlled (i.e., wavefront sensor-less optimization algorithms are utilized to control it by real time monitoring the compensation effects to guarantee convergence of the iteration). Ultimately, invisible fringes turn into resolvable ones, and null test is further realized. To demonstrate the feasibility of AWI, we designed one spatial light modulator (SLM) based AWI modality as an example. The system is based on a commercial interferometer and is easy to establish. No other elements are required besides the SLM. Principle, simulation, and experiments for the SLM based AWI are demonstrated. ”

Link to Publications Page

Publication: Optics Express
Issue/Year: Vol. 26, Issue 17, pp. 21910-21928 (2018)
DOI: 10.1364/OE.26.021910

Lateral position correction in ptychography using the gradient of intensity patterns

Author(s):

Priya Dwivedi and Sander Konijnenberg and Silvania Pereira and Paul Urbach

Abstract:

“Ptychography, a form of Coherent Diffractive Imaging, is used with short wavelengths (e.g. X-rays, electron beams) to achieve high-resolution image reconstructions. One of the limiting factors for the reconstruction quality is the accurate knowledge of the illumination probe positions. Recently, many advances have been made to relax the requirement for the probe positions accuracy. Here, we analyse and demonstrate a straightforward approach that can be used to correct the probe positions with sub-pixel accuracy. Simulations and experimental results with visible light are presented in this work.”

Link to Publications Page

Publication: Ultramicroscopy
Issue/Year: Ultramicroscopy, Volume 192, September 2018, Pages 29-36
DOI: 10.1016/j.ultramic.2018.04.004

Wavefront correction of spatial light modulators using an optical vortex image

Author(s): A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte

Abstract:

“We present a fast and flexible non-interferometric method for the correction of small surface deviations on spatial light modulators, based on the Gerchberg-Saxton algorithm. The surface distortion information is extracted from the shape of a single optical vortex, which is created by the light modulator. The method can be implemented in optical tweezers systems for an optimization of trapping fields, or in an imaging system for an optimization of the point-spread-function of the entire image path.”

Link to Publications Page

Publication:Optics Express
Issue/Year: Optics Express, Vol. 15, Issue 9, pp. 5801-5808
DOI: 10.1364/OE.15.005801

Diffraction-based determination of the phase modulation for general spatial light modulators

Author(s): David Engström, Gabriel Milewski, Jörgen Bengtsson, and Sheila Galt

Abstract:

“We describe a characterization method based on diffraction for obtaining the phase response of spatial light modulators (SLMs), which in general exhibit both amplitude and phase modulation. Compared with the conventional interferometer-based approach, the method is characterized by a simple setup that enables in situ measurements, allows for substantial mechanical vibration, and permits the use of a light source with a fairly low temporal coherence. The phase determination is possible even for a SLM with a full amplitude modulation depth, i.e., even if there are nulls in the amplitude transmission characteristic of the SLM. The method successfully determines phase modulation values in the full 2π rad range with high accuracy. The experimental work includes comparisons with interferometer measurements as well as a SLM characterization with a light-emitting diode (LED).”

Link to Publications Page

Publication: Applied Optics
Issue/Year: Applied Optics, Vol. 45, Issue 28, pp. 7195-7204 (2006)
DOI: 10.1364/AO.45.007195