A Low-Complexity Joint Compensation Scheme of Carrier Recovery for Coherent Free-Space Optical Communication

Author(s):

Tang, Xinyu; Wang, Liqian; Zhang, Wei; Cai, Shanyong; Li, Yuemei & Zhang, Zhiguo

Abstract:

“In this paper, a low-complexity joint compensation scheme of carrier recovery (JCSCR) for coherent free-space optical (CFSO) communication is proposed. We applied the carrier recovery joint compensation approach to a CFSO communication system in the quadrature phase shift keying (QPSK) modulation format. A signal-preprocessing stage, which effectively avoided the repetitive operations found in traditional carrier recovery schemes, was proposed. Unlike in existing carrier recovery algorithms, the modulated phase of the received signal could be accurately removed using only the sum and subtraction of real absolute values in the signal-preprocessing stage, greatly reducing the complexity of the operation. Since this algorithm avoids the traditional fourth operation, the system’s complexity is reduced while additional noise generated by fourth cross-terms would be prevented and system noise immunity would be greatly enhanced. In addition, this algorithm uses joint compensation of phase errors in the final compensation stage, further reducing the complexity of the computation of the whole algorithmic scheme. A 10 Gbps QPSK CFSO communication transmission experiment was conducted in an atmospheric turbulence channel to verify the proposed technique and improvement in receiver sensitivity.”

Link to Publications Page

Publication: Photonics
Issue/Year: Photonics, Volume 10; Number 4; Pages 389; 2023
DOI: 10.3390/photonics10040389

Encrypting orbital angular momentum holography with ghost imaging

Author(s):

Ma, Junyao; Li, Zhe; Zhao, Shengmei & Wang, Le

Abstract:

“In this paper, we propose a multiple images simultaneous encryption scheme by encrypting the orbital angular momentum (OAM) holography with ghost imaging. By controlling the topological charge of the incident OAM light beam on the OAM-multiplexing hologram, different images can be selectively obtained for ghost imaging (GI). Followed by the random speckles illumination, the bucket detector values in GI are obtained and then considered as the ciphertext transmitted to the receiver. The authorized user can distill the correct relationship between the bucket detections and the illuminating speckle patterns with the key and the additional topological charges, so that each holographic image can be successfully recovered, while the eavesdropper can not obtain any information about the holographic image without the key. The eavesdropper even can not get clear holographic image when all the key is eavesdropped but without topological charges. The experimental results show that the proposed encryption scheme has a higher capacity for multiple images because there is no theoretical topological charge limit for the selectivity of OAM holography, and the results also show that the proposed encryption scheme is more secure and has a stronger robustness. Our method may provide a promising avenue for multi-image encryption and has the potential for more applications.”

Link to Publications Page

Publication: Opt. Express
Issue/Year: Opt. Express, Volume 31; Number 7; Pages 11717–11728; 2023
DOI: 10.1364/OE.483923

Measurement of the fractional topological charge of an optical vortex beam through interference fringe dislocation

Author(s):

Shikder, Allarakha & Nishchal, Naveen K.

Abstract:

“An optical vortex beam carrying fractional topological charge (TC) has become an immerging field of interest due to its unique intensity distribution and fractional phase front in a transverse plane. Potential applications include micro-particle manipulation, optical communication, quantum information processing, optical encryption, and optical imaging. In these applications, it is necessary to know the correct information of the orbital angular momentum, which is related to the fractional TC of the beam. Therefore, the accurate measurement of fractional TC is an important issue. In this study, we demonstrate a simple technique to measure the fractional TC of an optical vortex with a resolution of 0.05 using a spiral interferometer and fork-shaped interference patterns. We further show that the proposed technique provides satisfactory results in cases of low to moderate atmospheric turbulences, which has relevance in free-space optical communications.”

Link to Publications Page

Publication: Applied Optics
Issue/Year: Applied Optics, Volume 62; Number 10; Pages D58; 2023
DOI: 10.1364/ao.476455

Simultaneously sorting vector vortex beams of 120 modes

Author(s):

Jia, Qi; Zhang, Yanxia; Shi, Bojian; Li, Hang; Li, Xiaoxin; Feng, Rui; Sun, Fangkui; Cao, Yongyin; Wang, Jian; Qiu, Cheng-Wei & Ding, Weiqiang

Abstract:

“Polarization (P), angular index (l), and radius index (p) are three independent degrees of freedom (DoFs) of vector vortex beams, which have been widely used in optical communications, quantum optics, information processing, etc. Although the sorting of one DoF can be achieved efficiently, it is still a great challenge to sort all these DoFs simultaneously in a compact and efficient way. Here, we propose a beam sorter to deal with all these three DoFs simultaneously by using a diffractive deep neural network (D^2NN) and experimentally demonstrated the robust sorting of 120 Laguerre-Gaussian (LG) modes using a compact D^2NN formed by one spatial light modulator and one mirror only. The proposed beam sorter demonstrates the great potential of D^2NN in optical field manipulation and will benefit the diverse applications of vector vortex beams.”

Link to Publications Page

Publication: arXiv
Issue/Year: arXiv, 2022
DOI: 10.48550/ARXIV.2212.08825

Optical classification and reconstruction through multimode fibers

Author(s):

Kürekci, Şahin

Abstract:

“When a light beam travels through a highly scattering medium, two-dimensional random intensity distributions (speckle patterns) are formed due to the complex scattering within the medium. Although they contain valuable information about the input signal and the characteristics of the propagation medium, the speckle patterns are difficult to unscramble, which makes imaging through scattering media an extremely challenging task. Multimode fibers behave similarly to scattering media since they scramble the input information through modal dispersion and create speckle patterns at the distal end. Because multimode fibers are compact and low-cost structures with the ability to transmit large amounts of data simultaneously for long distances, decoding the speckle patterns formed by a multimode fiber and reconstructing the input information has great implications in a wide range of applications, including fiber optic communication, sensor technology, optical imaging, and invasive biomedical applications such as endoscopy. In this thesis, we decode the speckle patterns and reconstruct the input information on the proximal end of a multimode fiber in three different scenarios. Our choice of input signals consists of numbers encoded as binary digits, handwritten letters, and optical frequencies. We train a deep learning model to classify and reconstruct the handwritten letters, while for the rest of the cases, we construct a transmission matrix between the input signals and the output speckle patterns, and solve the inverse propagation equation algebraically. In all cases, the relation between a speckle pattern and the corresponding input signal is learned with low error rates; thus, the signals are classified and reconstructed successfully using the speckle patterns they created. Classifying digits, letters, or images with speckle information aims to build useful systems in optical imaging, communication, and cryptography, while the classification of optical frequencies paves the way for building novel spectrometers. In addition to replicating the currently existing compact, low-budget, and high-resolution multimode fiber spectrometer, we also build a single-pixel fiber spectrometer in order to increase the compactness on the detection side and expand the application areas of the system. The single-pixel spectrometer we offer is based on the integrated intensity measurements of a fixed target region, where the light is focused by shaping the wavefront with a spatial light modulator. Spatial light modulators and wavefront shaping techniques are also utilized in other classification tasks in this thesis to generate the desired input signals.”

Link to Publications Page

Publication: Middle East Technical University, Thesis
Issue/Year: Graduate School of Natural and Applied Sciences, Thesis, 2022
DOI: https://hdl.handle.net/11511/101287

Optical data transmission through highly dynamic and turbid water using dynamic scaling factors and single-pixel detector

Author(s):

Pan, Zilan; Xiao, Yin; Cao, Yonggui; Zhou, Lina & Chen, Wen

Abstract:

“Free-space optical data transmission through non-static scattering media, e.g., dynamic and turbid water, is challenging. In this paper, we propose a new method to realize high-fidelity and high-robustness free-space optical data transmission through highly dynamic and turbid water using a series of dynamic scaling factors to correct light intensities recorded by a single-pixel bucket detector. A fixed reference pattern is utilized to obtain the series of dynamic scaling factors during optical data transmission in free space. To verify the proposed method, different turbidity levels, different strengths of water-flow-induced turbulence and a laser with different wavelengths are studied in optical experiments. It is demonstrated that the proposed scheme is robust against water-flow-induced turbulence and turbid water, and high-fidelity free-space optical information transmission is realized at wavelengths of 658.0 nm and 520.0 nm. The proposed method could shed light on the development of high-fidelity and high-robustness free-space optical data transmission through highly dynamic and turbid water.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 30; Number 24; Pages 43480; 2022
DOI: 10.1364/oe.474922

Lensless Optical Encryption of Multilevel Digital Data Containers Using Spatially Incoherent Illumination

Author(s):

Cheremkhin, Pavel; Evtikhiev, Nikolay; Krasnov, Vitaly; Ryabcev, Ilya; Shifrina, Anna & Starikov, Rostislav

Abstract:

“The necessity of the correction of errors emerging during the optical encryption process ledto the extensive use of data containers such as QR codes. However, due to specifics of optical encryp-tion, QR codes are not very well suited for the task, which results in low error correction capabilitiesin optical experiments mainly due to easily breakable QR code’s service elements and byte datastructure. In this paper, we present optical implementation of information optical encryption systemutilizing new multilevel customizable digital data containers with high data density. The results ofoptical experiments demonstrate efficient error correction capabilities of the new data container.”

Link to Publications Page

Publication: Applied Sciences
Issue/Year: Applied Sciences, Volume 12; Number 1; Pages 406; 2021
DOI: 10.3390/app12010406

Multipole-phase division multiplexing

Author(s):

Ruffato, Gianluca; Grillo, Vincenzo & Romanato, Filippo

Abstract:

“The control of structured waves has recently opened innovative scenarios in the perspective of radiation propagation, advanced imaging, and light-matter interaction. In information and communication technology, the spatial degrees of freedom offer a wider state space to carry many channels on the same frequency or increase the dimensionality of quantum protocols. However, spatial decomposition is much more arduous than polarization or frequency multiplexing, and very few practical examples exist. Among all, beams carrying orbital angular momentum gained a preeminent role, igniting a variety of methods and techniques to generate, tailor, and measure that property. In a more general insight into structured-phase beams, we introduce here a new family of wave fields having a multipole phase. These beams are devoid of phase singularities and described by two continuous spatial parameters which can be controlled in a practical and compact way via conformal optics. The outlined framework encompasses multiplexing, propagation, and demultiplexing as a whole for the first time, describing the evolution and transformation of wave fields in terms of conformal mappings. With its potentialities, versatility, and ease of implementation, this new paradigm introduces a novel playground for space division multiplexing, suggesting unconventional solutions for light processing and free-space communications.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 29; Number 23; Pages 38095; 2021
DOI: 10.1364/oe.438898

Recognizing fractional orbital angular momentum using feed forward neural network

Author(s):

Jing, Guoqing; Chen, Lizhen; Wang, Peipei; Xiong, Wenjie; Huang, Zebin; Liu, Junmin; Chen, Yu; Li, Ying; Fan, Dianyuan & Chen, Shuqing

Abstract:

“Fractional vortex beam (FVB) possessing helical phase can be applied in the shift-keying communication due to its fractional orbital angular momentum (FOAM) mode, which theoretically allows an infinite increase of the transmitted capacity. However, the discontinuity of spiral phase makes FVB more likely to be disturbed in turbulence environment, and the precise measurement of distorted FOAM modes is crucial for practical FOAM-based communication application. Here, we proposed a FOAM mode recognition method with feedforward neural network (FNN). Employing the diffraction preprocessing of a two-dimensional fork grating, the original optical features of FVBs can be extended along the far-field diffraction order, endowing FNN more feature information and saving calculation time, and enlarging the detection range to conjugate FOAM modes. The simulation results show that the 9-layer FNN can identify FOAM mode with interval of 0.1 with an accuracy of 99.1% under the turbulences of \(C^n_2=1×10^{–14}m^{–2/3}\) and Δz=10m. Furthermore, we experimentally constructed a 102-ary FOAM shift-keying communication link to transmit gray image, and the signals are successfully demodulated by the FNN model with the pixel-error-rate of 0.07160. It is anticipated that the proposed FNN-based FOAM recognition method will break the limitation of precision measurement under turbulence environment in practical FOAM applications.”

Link to Publications Page

Publication: Results in Physics
Issue/Year: Results in Physics, Volume 28; Pages 104619; 2021
DOI: 10.1016/j.rinp.2021.104619

Experimental analysis of adaptive optics correction methods on the beam carrying orbital angular momentum mode through oceanic turbulence

Author(s):

Zhan, Haichao; Wang, Le; Wang, Wennai & Zhao, Shengmei

Abstract:

“In recent years, as the demand for underwater communication has increased, underwater wireless optical communication (UWOC) has attracted a lot of attentions. Meanwhile, orbital angular momentum (OAM) has been applied in UWOC system to increase communication link capacity. However, the aberrations caused by oceanic turbulence (OT) is unavoidable, which results in serious intermodal crosstalk. Usually, adaptive optics (AO) is used to compensate these distortion aberrations. In this work, we experimentally demonstrate the influence of the distortion caused by OT, and evaluate the performance of AO correction algorithms, including Shack-Hartmann (SH), Stochastic-Parallel-Gradient-Descent (SPGD) and Gerchberg-Saxton (GS) algorithms. During the experiment, OT is simulated by using improved random phase screen model. We discuss the influence of various parameters of OT, including relative strength of temperature and salinity, strength of OT , and propagation distance, on the compensation effect with and without correction algorithms. The results show that all the three AO algorithms have good compensation effect on the distortion caused by OT, and GS algorithm has a better capability than the other two algorithms. Additionally, when the iteration numbers is less than 100, the compensation effect of GS and SPGD algorithms becomes more obvious as the iteration numbers increases, and GS algorithm is superior to SPGD algorithm. This work is beneficial to aberration correction of OAM-based UWOC system.”

Link to Publications Page

Publication: Optik
Issue/Year: Optik, Volume 240; Pages 166990; 2021
DOI: 10.1016/j.ijleo.2021.166990
1 2 3 4