Accommodative holography: improving accommodation response for perceptually realistic holographic displays

Author(s):

Kim, Dongyeon; Nam, Seung-Woo; Lee, Byounghyo; Seo, Jong-Mo & Lee, Byoungho

Abstract:

“Holographic displays have gained unprecedented attention as next-generation virtual and augmented reality applications with recent achievements in the realization of a high-contrast image through computer-generated holograms (CGHs). However, these holograms show a high energy concentration in a limited angular spectrum, whereas the holograms with uniformly distributed angular spectrum suffer from a severe speckle noise in the reconstructed images. In this study, we claim that these two physical phenomena attributed to the existing CGHs significantly limit the support of accommodation cues, which is known as one of the biggest advantages of holographic displays. To support the statement, we analyze and evaluate various CGH algorithms with contrast gradients – a change of contrast over the change of the focal diopter of the eye – simulated based on the optical configuration of the display system and human visual perception models. We first introduce two approaches to improve monocular accommodation response in holographic viewing experience; optical and computational approaches to provide holographic images with sufficient contrast gradients. We design and conduct user experiments with our prototype of holographic near-eye displays, validating the deficient support of accommodation cues in the existing CGH algorithms and demonstrating the feasibility of the proposed solutions with significant improvements on accommodative gains.”

Link to Publications Page

Publication: ACM Transactions on Graphics
Issue/Year: ACM Transactions on Graphics, Volume 41; Number 4; Pages 1–15; 2022
DOI: 10.1145/3528223.3530147

Pixel Super-Resolution Phase Retrieval for Lensless On-Chip Microscopy via Accelerated Wirtinger Flow

Author(s):

Gao, Yunhui; Yang, Feng & Cao, Liangcai

Abstract:

“Empowered by pixel super-resolution (PSR) and phase retrieval techniques, lensless onchip microscopy opens up new possibilities for high-throughput biomedical imaging. However, the current PSR phase retrieval approaches are time consuming in terms of both the measurement and reconstruction procedures. In this work, we present a novel computational framework for PSR phase retrieval to address these concerns. Specifically, a sparsity-promoting regularizer is introduced to enhance the well posedness of the nonconvex problem under limited measurements, and Nesterov’s momentum is used to accelerate the iterations. The resulting algorithm, termed accelerated Wirtinger flow (AWF), achieves at least an order of magnitude faster rate of convergence and allows a twofold reduction in the measurement number while maintaining competitive reconstruction quality. Furthermore, we provide general guidance for step size selection based on theoretical analyses, facilitating simple implementation without the need for complicated parameter tuning. The proposed AWF algorithm is compatible with most of the existing lensless on-chip microscopes and could help achieve label-free rapid whole slide imaging of dynamic biological activities at subpixel resolution.”

Link to Publications Page

Publication: Cells
Issue/Year: Cells, Volume 11; Number 13; Pages 1999; 2022
DOI: 10.3390/cells11131999

High-resolution surface plasmon resonance holographic microscopy based on symmetrical excitation

Author(s):

Dou, Jiazhen; Dong, Chen; Dai, Siqing; Mi, Jingyu; Luo, Xiangyuan; Di, Jianglei; Zhang, Jiwei & Zhao, Jianlin

Abstract:

“Surface plasmon resonance holographic microscopy (SPRHM) is able to simultaneously obtain the amplitude- and phase-contrast surface plasmon resonance (SPR) images, showing great potentials in imaging near-field targets with high sensitivity. However, suffered by the decaying length of surface plasmon wave which can be as long as tens of microns, the spatial resolution of SPRHM is lower than that of traditional holographic microscopy. In this work, we propose to enhance the spatial resolution in SPRHM by exciting surface plasmon resonance in two symmetrical directions and detecting the complex amplitudes of the reflected light symmetrically. Through the Fourier analysis of the recorded composite hologram, the reconstruction schemes for high-resolution amplitude- and phase-contrast SPR images are established, respectively. The feasibility and advantages of the proposed method is verified by numerical simulations and experimental demonstrations of small-size particles and micro-structures.”

Link to Publications Page

Publication: Optics and Lasers in Engineering
Issue/Year: Optics and Lasers in Engineering, Volume 153; Pages 107000; 2022
DOI: 10.1016/j.optlaseng.2022.107000

Hogel-free Holography

Author(s):

Chakravarthula, Praneeth; Tseng, Ethan; Fuchs, Henry & Heide, Felix

Abstract:

“Holography is a promising avenue for high-quality displays without requiring bulky, complex optical systems. While recent work has demonstrated accurate hologram generation of 2D scenes, high-quality holographic projections of 3D scenes has been out of reach until now. Existing multiplane 3D holography approaches fail to model wavefronts in the presence of partial occlusion while holographic stereogram methods have to make a fundamental trade of between spatial and angular resolution. In addition, existing 3D holographic display methods rely on heuristic encoding of complex amplitude into phase-only pixels which results in holograms with severe artifacts. Fundamental limitations of the input representation, wavefront modeling, and optimization methods prohibit artifact-free 3D holographic projections in today’s displays. To lift these limitations, we introduce hogel-free holography which optimizes for true 3D holograms, supporting both depth- and view- dependent efects for the irst time. Our approach overcomes the fundamental spatio-angular resolution trade-of typical to stereogram approaches. Moreover, it avoids heuristic encoding schemes to achieve high image idelity over a 3D volume. We validate that the proposed method achieves 10 dB PSNR improvement on simulated holographic reconstructions. We also validate our approach on an experimental prototype with accurate parallax and depth focus efects”

Link to Publications Page

Publication: ACM Transactions on Graphics
Issue/Year: ACM Transactions on Graphics, 2022
DOI: 10.1145/3516428

Speckle reduction in holographic display with partially spatial coherent illumination

Author(s):

Zhao, Zijie; Duan, Junyi & Liu, Juan

Abstract:

“A method of holographic reconstruction under partially spatial coherent illumination with different degree of coherence is proposed to suppress speckle noise based on theoretical analysis. The core factor of speckle reduction based on partially spatial coherent light is convolution operation in CGH reconstruction process. Numerical simulations and optical experiments are both performed to verify the proposed theory. The results reconstructed by proposed and traditional method are compared, and the speckle contrasts can be reduced to 0.05 and 0.08 at most in Fresnel and Fraunhofer zone respectively. The image quality is obviously improved. This method can provide further applications for three-dimensional holographic display, beam shaping and coherence degree modulation techniques.”

Link to Publications Page

Publication: Optics Communications
Issue/Year: Optics Communications, Volume 507; Pages 127604; 2022
DOI: 10.1016/j.optcom.2021.127604

Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography

Author(s):

Wu, Peng; Zhang, Dejie; Yuan, Jing; Zeng, Shaoqun; Gong, Hui; Luo, Qingming & Yang, Xiaoquan

Abstract:

“Fluorescence microscopy plays an irreplaceable role in biomedicine. However, limited depth of field (DoF) of fluorescence microscopy is always an obstacle of image quality, especially when the sample is with an uneven surface or distributed in different depths. In this manuscript, we combine deep learning with Fresnel incoherent correlation holography to describe a method to obtain significant large DoF fluorescence microscopy. Firstly, the hologram is restored by the Auto-ASP method from out-of-focus to in-focus in double-spherical wave Fresnel incoherent correlation holography. Then, we use a generative adversarial network to eliminate the artifacts introduced by Auto-ASP and output the high-quality image as a result. We use fluorescent beads, USAF target and mouse brain as samples to demonstrate the large DoF of more than 400µm, which is 13 times better than that of traditional wide-field microscopy. Moreover, our method is with a simple structure, which can be easily combined with many existing fluorescence microscopic imaging technology”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 30; Number 4; Pages 5177; 2022
DOI: 10.1364/oe.451409

Dual-task convolutional neural network based on the combination of the U-Net and a diffraction propagation model for phase hologram design with suppressed speckle noise

Author(s):

Sun, Xiuhui; Mu, Xingyu; Xu, Cheng; Pang, Hui; Deng, Qiling; Zhang, Ke; Jiang, Haibo; Du, Jinglei; Yin, Shaoyun & Du, Chunlei

Abstract:

“In this paper, a dual-task convolutional neural network based on the combination of the U-Net and a diffraction propagation model is proposed for the design of phase holograms to suppress speckle noise of the reconstructed images. By introducing a Fresnel transmission layer, based on angular spectrum diffraction theory, as the diffraction propagation model and incorporating it into U-Net as the output layer, the proposed neural network model can describe the actual physical process of holographic imaging, and the distributions of both the light amplitude and phase can be generated. Afterwards, by respectively using the Pearson correlation coefficient (PCC) as the loss function to modulate the distribution of the amplitude, and a proposed target-weighted standard deviation (TWSD) as the loss function to limit the randomness and arbitrariness of the reconstructed phase distribution, the dual tasks of the amplitude reconstruction and phase smoothing are jointly solved, and thus the phase hologram that can produce high quality image without speckle is obtained. Both simulations and optical experiments are carried out to confirm the feasibility and effectiveness of the proposed method. Furthermore, the depth of field (DOF) of the image using the proposed method is much larger than that of using the traditional Gerchberg-Saxton (GS) algorithm due to the smoothness of the reconstructed phase distribution, which is also verified in the experiments. This study provides a new phase hologram design approach and shows the potential of neural networks in the field of the holographic imaging and more.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 30; Number 2; Pages 2646; 2022
DOI: 10.1364/oe.440956

Polygon-based computer-generated holography: a review of fundamentals and recent progress [Invited]

Author(s):

Zhang, Yaping; Fan, Houxin; Wang, Fan; Gu, Xianfeng; Qian, Xiaofan & Poon, Ting-Chung

Abstract:

“In this review paper, we first provide comprehensive tutorials on two classical methods of polygon-based computer-generated holography: the traditional method (also called the fast-Fourier-transform-based method) and the analytical method. Indeed, other modern polygon-based methods build on the idea of the two methods. We will then present some selective methods with recent developments and progress and compare their computational reconstructions in terms of calculation speed and image quality, among other things. Finally, we discuss and propose a fast analytical method called the fast 3D affine transformation method, and based on the method, we present a numerical reconstruction of a computer-generated hologram (CGH) of a 3D surface consisting of 49,272 processed polygons of the face of a real person without the use of graphic processing units; to the best of our knowledge, this represents a state-of-the-art numerical result in polygon-based computed-generated holography. Finally, we also show optical reconstructions of such a CGH and another CGH of the Stanford bunny of 59,996 polygons with 31,724 processed polygons after back-face culling. We hope that this paper will bring out some of the essence of polygon-based computer-generated holography and provide some insights for future research.”

Link to Publications Page

Publication: Applied Optics
Issue/Year: Applied Optics, Volume 61; Number 5; Pages B363; 2022
DOI: 10.1364/ao.444973

Lensless Optical Encryption of Multilevel Digital Data Containers Using Spatially Incoherent Illumination

Author(s):

Cheremkhin, Pavel; Evtikhiev, Nikolay; Krasnov, Vitaly; Ryabcev, Ilya; Shifrina, Anna & Starikov, Rostislav

Abstract:

“The necessity of the correction of errors emerging during the optical encryption process ledto the extensive use of data containers such as QR codes. However, due to specifics of optical encryp-tion, QR codes are not very well suited for the task, which results in low error correction capabilitiesin optical experiments mainly due to easily breakable QR code’s service elements and byte datastructure. In this paper, we present optical implementation of information optical encryption systemutilizing new multilevel customizable digital data containers with high data density. The results ofoptical experiments demonstrate efficient error correction capabilities of the new data container.”

Link to Publications Page

Publication: Applied Sciences
Issue/Year: Applied Sciences, Volume 12; Number 1; Pages 406; 2021
DOI: 10.3390/app12010406

Neural 3D holography

Author(s):

Choi, Suyeon; Gopakumar, Manu; Peng, Yifan; Kim, Jonghyun & Wetzstein, Gordon

Abstract:

“Holographic near-eye displays promise unprecedented capabilities for virtual and augmented reality (VR/AR) systems. The image quality achieved by current holographic displays, however, is limited by the wave propagation models used to simulate the physical optics. We propose a neural network-parameterized plane-to-multiplane wave propagation model that closes the gap between physics and simulation. Our model is automatically trained using camera feedback and it outperforms related techniques in 2D plane-to-plane settings by a large margin. Moreover, it is the first network-parameterized model to naturally extend to 3D settings, enabling high-quality 3D computer-generated holography using a novel phase regularization strategy of the complex-valued wave field. The efficacy of our approach is demonstrated through extensive experimental evaluation with both VR and optical see-through AR display prototypes.”

Link to Publications Page

Publication: ACM Transactions on Graphics
Issue/Year: ACM Transactions on Graphics, Volume 40; Number 6; Pages 1–12; 2021
DOI: 10.1145/3478513.3480542