Hologram generation via Hilbert transform

Author(s):

Tomoyoshi Shimobaba, Takashi Kakue, Yota Yamamoto, Ikuo Hoshi, Harutaka Shiomi, Takashi Nishitsuji, Naoki Takada, and Tomoyoshi Ito

Abstract:

“We propose an indirect method for generating a complex hologram and phase-only hologram from an amplitude hologram using the Hilbert transform. The Hilbert transform generates an imaginary part of complex amplitude from only an amplitude hologram, resulting in the reduction of the total computational complexity of complex and phase-only holograms. More importantly, the proposed method can reduce the hardware resources of dedicated hologram processors.”

Link to Publications Page

Publication: OSA Continuum
Issue/Year/DOI: Vol. 3, Issue 6, pp. 1498-1503 (2020)
DOI: 10.1364/OSAC.395003

Fabrication of oil–water separation copper filter by spatial light modulated femtosecond laser

Author(s):

Xiaoyan Sun, Zhuolin Dong, Kaifan Cheng, Dongkai Chu, Dejian Kong, Youwang Hu and Ji’an Duan

Abstract:

“Surface with oil–water separation performance has attracted more and more attention in the application of oil-containing wastewater purification. Much related work has been done by many researchers. However, there are still many difficulties in rapid manufacturing of filter membranes with special wettability. In this paper, an efficient, flexible method to fabricate microporous arrays by using a femtosecond (fs) laser combined with a spatial light modulator is proposed. The laser treated copper sheet surface shows hydrophobic and superoleophilic properties due to the microstructure. Meanwhile, the array of micro-through-holes on the surface can allow oil to penetrate through holes and prevent water from penetrating. The manufacturing process is not only extremely efficient, with a 10 × 10 focus array used in the ablation, but also it is without chemical method and the filter presents a long-term stable hydrophobic and superoleophilic performance.”

Link to Publications Page

Publication: Journal of Micromechanics and Microengineering

Issue/Year/DOI: Volume 30, Number 6
DOI: 10.1088/1361-6439/ab870d

Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers

Author(s):

Yanan Cai, Shaohui Yan, Zhaojun Wang, Runze Li, Yansheng Liang, Yuan Zhou, Xing Li, Xianghua Yu, Ming Lei and Baoli Yao

Abstract:

“Benefitting from the development of commercial spatial light modulator (SLM), holographic optical tweezers (HOT) have emerged as a powerful tool for life science, material science and particle physics. The calculation of computer-generated holograms (CGH) for generating multi-focus arrays plays a key role in HOT for trapping of a bunch of particles in parallel. To realize dynamic 3D manipulation, we propose a new tilted-plane GS algorithm for fast generation of multiple foci. The multi-focal spots with a uniformity of 99% can be generated in a tilted plane. The computation time for a CGH with 512512 pixels is less than 0.1 second.
We demonstrated the power of the algorithm by simultaneously trapping and rotating silica beads with a 77 spots array in three dimensions. The presented algorithm is expected as a powerful kernel of HOT.”

Link to Publications Page

Publication: Optics Express

Issue/Year/DOI: Vol. 28, Issue 9, pp. 12729-12739
DOI: 10.1364/OE.389897