Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms

Author(s):

Liu, Tsung-Li and Upadhyayula, Srigokul and Milkie, Daniel E. and Singh, Ved and Wang, Kai and Swinburne, Ian A. and Mosaliganti, Kishore R. and Collins, Zach M. and Hiscock, Tom W. and Shea, Jamien and Kohrman, Abraham Q. and Medwig, Taylor N. and Dambournet, Daphne and Forster, Ryan and Cunniff, Brian and Ruan, Yuan and Yashiro, Hanako and Scholpp, Steffen and Meyerowitz, Elliot M. and Hockemeyer, Dirk and Drubin, David G. and Martin, Benjamin L. and Matus, David Q. and Koyama, Minoru and Megason, Sean G. and Kirchhausen, Tom and Betzig, Eric

Abstract:

“True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.”

 

Link to Publications Page

Publication: Science

Issue/Year/DOI: Science, Vol. 360, Issue 6386, (2018)
DOI: 10.1126/science.aaq1392

Generation of focal pattern with controllable polarization and intensity for laser beam passing through a multi-mode fiber

Author(s):

Weiru Fan and Xiansheng Hu and Bamao Zhaxi and Ziyang Chen and Jixiong Pu

Abstract:

“Similar to coherent light passing through a scattering medium, the propagation of coherent light through a multi-mode fiber (MMF) will result in a random speckle field. For a non-polarization maintaining MMF, the randomization can be observed not only in the intensity distribution, but also in the polarization state. In this paper, we propose a new technique known as phase combination to control the optical field for the light passing through the MMF. We show that, based on this new technique, the random speckle pattern can be modulated into an intensity distribution of two bright focal spots with mutually perpendicular polarization by only one polarizer. In particular, the intensity distribution of these two focal spots can be quantitatively controlled. This technique may find applications in medical imaging, nonlinear optics and optical communication etc.”

Link to Publications Page

Publication: Optics Express

Issue/Year/DOI: Optics Express Vol. 26, Issue 6, pp. 7693-7700 (2018)
DOI: 10.1364/OE.26.007693

Plasmonic computing of spatial differentiation.

Author(s):

Zhu, Tengfeng and Zhou, Yihan and Lou, Yijie and Ye, Hui and Qiu, Min and Ruan, Zhichao and Fan, Shanhui

Abstract:

“Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal-dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.”

Link to Publications Page

Publication: Nature Communications

Issue/Year/DOI: Nature Communications volume 8, Article number: 15391 (2017)
DOI: 10.1038/ncomms15391

Chromatic aberration control with liquid crystal spatial phase modulators

Author(s):

Jose L. Martinez and Enrique J. Fernandez and Pedro M. Prieto and Pablo Artal

Abstract:

“The chromatic behavior of diffractive optical elements, exhibiting 2π-wrapped phase profiles, implemented into liquid crystal spatial light modulators (LC-SLM) is described. A wrapped phase map is only equivalent to the original continuous profile for the design wavelength while at other wavelengths there are unwanted phase jumps and the profile does not correspond to a pure defocus. For those conditions the wrapped profile behaves as a multiple order lens (multi-focal lens). The optical power dispersion for each order is linearly proportional to the wavelength, while the energy of each order depends on the design wavelength and the material dispersion. For practical purposes, for most of the visible range only first order (main defocus) is relevant but two other orders may also be considered depending on the actual PSF of the system. As an application, we demonstrate that the longitudinal chromatic aberration of the eye can be compensated by the diffractive lens dispersion when the appropriate defocus is programmed into the SLM.”

Link to Publications Page

Publication: Optics Express

Issue/Year/DOI: Optics Express, Vol. 25, Issue 9, pp. 9793-9801 (2018)
DOI: 10.1364/OE.25.009793

 

Imaging moving targets through scattering media

Author(s):

Michelle Cua and Edward (Haojiang) Zhou and Changhuei Yang

Abstract:

“Optical microscopy in complex, inhomogeneous media is challenging due to the presence of multiply scattered light that limits the depths at which diffraction-limited resolution can be achieved. One way to circumvent the degradation in resolution is to use speckle- correlation-based imaging (SCI) techniques, which permit imaging of objects inside scattering media at diffraction-limited resolution. However, SCI methods are currently limited to imaging sparsely tagged objects in a dark-field scenario. In this work, we demonstrate the ability to image hidden, moving objects in a bright-field scenario. By using a deterministic phase modulator to generate a spatially incoherent light source, the background contribution can be kept constant between acquisitions and subtracted out. In this way, the signal arising from the object can be isolated, and the object can be reconstructed with high fidelity. With the ability to effectively isolate the object signal, our work is not limited to imaging bright objects in the dark-field case, but also works in bright-field scenarios, with non-emitting objects.”

Link to Publications Page

Publication: Optics Express

Issue/Year/DOI: Optics Express Vol. 25, Issue 4, pp. 3935-3945  (2017)

DOI: 10.1364/OE.25.003935