Author(s):

Zhaojun Wang and Yanan Cai and Yansheng Liang and Xing Zhou and Shaohui Yan and Dan Dan and Piero R. Bianco and Ming Lei and Baoli Yao

Abstract:

“A wide-field fluorescence microscope with a double-helix point spread function (PSF) is constructed to obtain the specimen’s three-dimensional distribution with a single snapshot. Spiral-phase-based computer-generated holograms (CGHs) are adopted to make the depth-of-field of the microscope adjustable. The impact of system aberrations on the double-helix PSF at high numerical aperture is analyzed to reveal the necessity of the aberration correction. A modified cepstrum-based reconstruction scheme is promoted in accordance with properties of the new double-helix PSF. The extended depth-of-field images and the corresponding depth maps for both a simulated sample and a tilted section slice of bovine pulmonary artery endothelial (BPAE) cells are recovered, respectively, verifying that the depth-of-field is properly extended and the depth of the specimen can be estimated at a precision of 23.4nm. This three-dimensional fluorescence microscope with a framerate-rank time resolution is suitable for studying the fast developing process of thin and sparsely distributed micron-scale cells in extended depth-of-field.”

Link to Publications Page

Publication: Biomedical Optics Express

Issue/Year/DOI: Biomedical Optics Express, Vol. 8, Issue 12, (2017)
DOI: 10.1364/BOE.8.005493