Phase distributions typically contain richer information about the morphology, structure, and organizational properties of a sample than intensity distributions. However, due to the weak scattering and absorption properties of pure phase objects, intensity measurements are unable to provide information about the phase, making it more challenging to reveal phase structure from the incident light background. Here, we propose a method for visualizing phase objects through simple optical reflection occurring at a glass interface. By exploiting the spin-orbit interaction of light and the Brewster effect, it is possible to perform a two-dimensional differentiation operation on the input light field. This enables high-contrast, isotropic differential images for pure phase objects. Experimental measurements are conducted on pure phase masks with different phase jumps to verify the superiority of our method. Additionally, bias retardation is introduced based on the differential system, thereby enabling phase reconstruction of low-contrast phase objects. The proposed mechanism for visualizing pure phase objects may lead to important applications in versatile and high-contrast bioimaging.
Open Access
HOLOEYE Photonics AG
Volmerstrasse 1
12489 Berlin, Germany
Phone: +49 (0)30 4036 9380
Fax: +49 (0)30 4036 938 99
contact@holoeye.com
© 2025 HOLOEYE Photonics AG
You are currently viewing a placeholder content from Facebook. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Mapbox. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from OpenStreetMap. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from X. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More Information