We customized light speckle fields with both super-bunching and non-diffracting properties, accordingly named as the super-bunching, non-diffracting (SP-ND) speckle fields, by introducing pupil function of a ring aperture with azimuthally correlated phases in the vertically opposite angles. Calculating ghost imaging based on the SP-ND speckle fields was demonstrated to be of higher visibility, higher spatial resolution and larger depth of field than that based on the conventional speckle fields such as pseudo-thermal fields. Interestingly, the SP-ND speckles are also of self-healing capability in respect of not only the speckle intensity distribution but also the high-order coherence properties. Therefore, even when the SP-ND speckle fields are seriously disturbed, for example, blocked partially by an opaque obstacle, ghost images are able to be reconstructed once the object is placed in the self-healed speckle fields.
Open Access
You are currently viewing a placeholder content from Vimeo. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from YouTube. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Facebook. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Mapbox. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from OpenStreetMap. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from X. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More Information