Space division multiplexing (SDM) can achieve higher communication transmission capacity by exploiting more spatial channels in a single optical fiber. For weakly coupled few-mode fiber, different mode groups (MGs) are highly isolated from each other, so the SDM system can be simplified by utilizing MG multiplexing and intensity modulation direct detection. A key issue to be addressed here is MG demultiplexing, which requires processing all the modes within a single MG in contrast to MG multiplexing. Benefiting from the great light manipulation freedom of the diffractive optical network (DON), we achieve efficient separation of the MGs and receive them with the multimode fiber (MMF) array. To fully exploit the mode field freedom of the MMF, a non-deterministic mode conversion strategy is proposed here to optimize the DON, which enables high-efficiency demultiplexing with a much smaller number of phase plates. As a validation, we design a 6-MG demultiplexer consisting of only five phase plates; each MG is constituted by several orbital angular momentum modes. The designed average loss and crosstalk at the wavelength of 1550 nm are 0.5 dB and , respectively. In the experiment, the loss after coupling to the MMF ranged from 4.1 to 4.9 dB, with an average of 4.5 dB. The inter-MG crosstalk is better than , with an average of . These results well support the proposed scheme and will provide a practical solution to the MG demultiplexing problem in a short-distance SDM system.
Open Access
HOLOEYE Photonics AG
Volmerstrasse 1
12489 Berlin, Germany
Phone: +49 (0)30 4036 9380
Fax: +49 (0)30 4036 938 99
contact@holoeye.com
© 2025 HOLOEYE Photonics AG