Optical-resolution photoacoustic microscopy (OR-PAM) has rapidly developed and is capable of characterizing optical absorption properties of biological tissue with high contrast and high resolution (micrometer-scale lateral resolution). However, the conventional excitation source of rapidly diverging Gaussian beam imposes limitations on the depth of focus (DOF) in OR-PAM, which in turn affects the depth-resolving ability and detection sensitivity. Here, we proposed a flexible DOF, depth-invariant resolution photoacoustic microscopy (FDIR-PAM) with nondiffraction of Airy beams. The spatial light modulator was incorporated into the optical pathway of the excitation source with matched switching phase patterns, achieving the flexibly adjustable modulation parameters of the Airy beam. We conducted experiments on phantoms and intravital tissue to validate the effectiveness of the proposed approach for high sensitivity and high-resolution characterization of variable topology of tissue, offering a promising DOF of 926μm with an invariant lateral resolution of 3.2μm, which is more than 17-fold larger compared to the Gaussian beam. In addition, FDIR-PAM successfully revealed clear individual zebrafish larvae and the pigment pattern of adult zebrafishes, as well as fine morphology of cerebral vasculature in a large depth range with high resolution, which has reached an evident resolving capability improvement of 62% mean value compared with the Gaussian beam.
HOLOEYE Photonics AG
Volmerstrasse 1
12489 Berlin, Germany
Phone: +49 (0)30 4036 9380
Fax: +49 (0)30 4036 938 99
contact@holoeye.com
© 2023 HOLOEYE Photonics AG