To achieve real-time deep learning wavefront sensing (DLWFS) of dynamic random wavefront distortions induced by atmospheric turbulence, this study proposes an enhanced wavefront sensing neural network (WFSNet) based on convolutional neural networks (CNN). We introduce a novel multi-objective neural architecture search (MNAS) method designed to attain Pareto optimality in terms of error and floating-point operations (FLOPs) for the WFSNet. Utilizing EfficientNet-B0 prototypes, we propose a WFSNet with enhanced neural architecture which significantly reduces computational costs by 80% while improving wavefront sensing accuracy by 22%. Indoor experiments substantiate this effectiveness. This study offers a novel approach to real-time DLWFS and proposes a potential solution for high-speed, cost-effective wavefront sensing in the adaptive optical systems of satellite-to-ground laser communication (SGLC) terminals.
Open Access
HOLOEYE Photonics AG
Volmerstrasse 1
12489 Berlin, Germany
Phone: +49 (0)30 4036 9380
Fax: +49 (0)30 4036 938 99
contact@holoeye.com
© 2023 HOLOEYE Photonics AG