In this study, we propose a novel approach for dynamic micro-vibration measurement based on an interferometric system utilizing a fractional optical vortex (FOV) beam as the reference and a Gaussian beam as the measurement path. The reflected Gaussian beam encodes the vibration information of the target, which is extracted by analyzing the rotational behavior of the petal-like interference pattern formed through coaxial interference with the FOV beam. When the topological charge (TC) of the FOV beam is less than or equal to one, a single-petal structure is generated, significantly reducing the complexity of angular tracking compared to traditional multi-petals OAM-based methods. Moreover, using a Gaussian beam as the measurement path mitigates spatial distortions during propagation, enhancing the overall robustness and accuracy. We systematically investigate the effects of TC, CCD frame rate, and interference contrast on measurement performance. Experimental results demonstrate that the proposed method achieves high angular resolution with a minimum angle deviation of 18.2 nm under optimal TC conditions. The system exhibits strong tolerance to environmental disturbances, making it well-suited for applications requiring non-contact, nanometer-scale vibration sensing, such as structural health monitoring, precision metrology, and advanced optical diagnostics.
Open Access
HOLOEYE Photonics AG
Volmerstrasse 1
12489 Berlin, Germany
Phone: +49 (0)30 4036 9380
Fax: +49 (0)30 4036 938 99
contact@holoeye.com
© 2025 HOLOEYE Photonics AG
You are currently viewing a placeholder content from Facebook. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Google Maps. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from Mapbox. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from OpenStreetMap. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from X. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More Information