Author(s):

Wu, Peng; Zhang, Dejie; Yuan, Jing; Zeng, Shaoqun; Gong, Hui; Luo, Qingming & Yang, Xiaoquan

Abstract:

“Fluorescence microscopy plays an irreplaceable role in biomedicine. However,

limited depth of field (DoF) of fluorescence microscopy is always an obstacle of image quality,

especially when the sample is with an uneven surface or distributed in different depths. In

this manuscript, we combine deep learning with Fresnel incoherent correlation holography to

describe a method to obtain significant large DoF fluorescence microscopy. Firstly, the hologram

is restored by the Auto-ASP method from out-of-focus to in-focus in double-spherical wave

Fresnel incoherent correlation holography. Then, we use a generative adversarial network to

eliminate the artifacts introduced by Auto-ASP and output the high-quality image as a result.

We use fluorescent beads, USAF target and mouse brain as samples to demonstrate the large

DoF of more than 400µm, which is 13 times better than that of traditional wide-field microscopy.

Moreover, our method is with a simple structure, which can be easily combined with many

existing fluorescence microscopic imaging technology”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 30; Number 4; Pages 5177; 2022
DOI: 10.1364/oe.451409