Rapid phase calibration of a spatial light modulator using novel phase masks and optimization of its efficiency using an iterative algorithm

Author(s):

Amar Deo Chandra and Ayan Banerjee

Abstract:

“We develop an improved phase calibration method of a reflective SLM using interferometry by employing novel phase masks. In the process, we definitively determine the actual maximum phase throw of our SLM which provides a recipe for users to verify supplier specifications. We generate optimised phase masks by using Iterative Fourier Transform Algorithm (IFTA) and compare their performance with global linear corrections in the look-up table (LUT) and find that the former perform with around 20% better efficiency. Besides obtaining an array of 1D/2D spots having high uniformity (90%) using IFTA, our result exemplifies the use of iterative algorithms for improving efficiency of phase limited SLMs. Finally, our improved phase calibration method enables threefold faster phase measurements, and to the best of our knowledge, is the first endeavour directed towards enabling rapid phase characterisation of an SLM using interferometric measurements. We believe that it can have very useful applications in settings which may require fast phase calibrations as well as for real-time, multi-wavelength spectroscopic applications.”

Link to Publications Page

Publication: Journal of Modern Optics
Issue/Year: Volume 67- Issue 7
DOI: 10.1080/09500340.2020.1760954

Compact design for optical-see-through holographic displays employing holographic optical elements

Author(s):

Pengcheng Zhou and Yan Li and Shuxin Liu and Yikai Su

Abstract:

“Holographic AR display is a promising technology for head-mounted display devices. However, it usually has a complicated optical system and a large form factor, preventing it from widespread applications. In this work, we propose a flat-panel design to produce a compact holographic AR display, where traditional optical elements are replaced by two holographic optical elements (HOEs). Here, these two thin HOEs together perform the optical functions of a beam expander, an ocular lens, and an optical combiner. Without any bulky traditional optics, our design could achieve a compact form factor that is similar to a pair of glasses. We also implemented a proof-of-concept prototype to verify its feasibility. Being compact, lightweight and free from accommodation-convergence discrepancy, our design is promising for fatigue-free AR displays.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express Volume 26, Issue 18
DOI: 10.1364/OE.26.022866

Accelerated generation of holographic videos of 3-D objects in rotational motion using a curved hologram-based rotational-motion compensation method

Author(s):

Hong-Kun Cao and Shu-Feng Lin and Eun-Soo KimAbstract:

“Abstract: A new curved hologram-based rotational-motion compensation (CH-RMC) method is proposed for accelerated generation of holographic videos of 3-D objects moving on the random path with many locally different arcs. All of those rotational motions of the object made on each arc can be compensated, just by rotating their local curved holograms along the curving surfaces matched with the object’s moving trajectory without any additional calculation process, which results in great enhancements of the computational speed of the conventional hologram-generation algorithms. Experiments with a test video scenario reveal that average numbers of calculated object points (ANCOPs) and average calculation times for one frame (ACTs) of the CH-RMC-based ray-tracing, wavefront-recording-plane and novel- look-up-table methods have been found to be reduced by 73.10%, 73.84%, 73.34%, and 68.75%, 50.82%, 66.59%, respectively, in comparison with those of their original methods. In addition, successful reconstructions of 3-D scenes from those holographic videos confirm the feasibility of the proposed system. ”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express Volume 26, Issue 16 pp. 21279-21300 (2018)
DOI: 10.1364/oe.26.021279

Demonstration of a vectorial optical field generator with adaptive close loop control

Author(s):

Jian Chen and Lingjiang Kong and Qiwen Zhan

Abstract:

“We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.”

Link to Publications Page

Publication: Review of Scientific Instruments
Issue/Year: Review of SCientific Instruments 88, 125111 (2017)
DOI: 10.1063/1.4999656

Tightly focused optical field with controllable photonic spin orientation

Author(s):

Jian Chen and Chenhao Wan and Ling Jiang Kong and Qiwen Zhan

Abstract:

“The spin angular momentum of photons offers a robust, scalable and highbandwidth toolbox for many promising applications based upon spin-controlled manipulations of light. In this work, we develop a method to achieve controllable photonic spin orientation within a diffraction limited optical focal spot produced by a high numerical aperture objective lens. The required pupil field is found analytically through reversing the radiation patterns from two electric dipoles located at the focal point of the lens with orthogonal oscillation directions and quadrature phase. The calculated pupil fields are experimentally generated with a vectorial optical field generator. The produced photonic spin orientations are quantitatively evaluated by their spin densities according to the tightly focused electric fields calculated by Richard-Wolf vectorial diffraction theory to demonstrate the validity and capability of the proposed technique.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 25, Number 16 pp. 19517-19528 (2017)
DOI: 10.1364/OE.25.019517

Full parallax three-dimensional computer generated hologram with occlusion effect using ray casting technique

Author(s):

Hao Zhang, Qiaofeng Tan and Guofan Jin

Abstract:

“Holographic display is capable of reconstructing the whole optical wave field of a three-dimensional (3D) scene. It is the only one among all the 3D display techniques that can produce all the depth cues. With the development of computing technology and spatial light modulators, computer generated holograms (CGHs) can now be used to produce dynamic 3D images of synthetic objects. Computation holography becomes highly complicated and demanding when it is employed to produce real 3D images. Here we present a novel algorithm for generating a full parallax 3D CGH with occlusion effect, which is an important property of 3D perception, but has often been neglected in fully computed hologram synthesis. The ray casting technique, which is widely used in computer graphics, is introduced to handle the occlusion issue of CGH computation. Horizontally and vertically distributed rays are projected from each hologram sample to the 3D objects to obtain the complex amplitude distribution. The occlusion issue is handled by performing ray casting calculations to all the hologram samples. The proposed algorithm has no restriction on or approximation to the 3D objects, and hence it can produce reconstructed images with correct shading effect and no visible artifacts. Programmable graphics processing unit (GPU) is used to perform parallel calculation. This is made possible because each hologram sample belongs to an independent operation. To demonstrate the performance of our proposed algorithm, an optical experiment is performed to reconstruct the 3D scene by using a phase-only spatial light modulator. We can easily perceive the accommodation cue by focusing our eyes on different depths of the scene and the motion parallax cue with occlusion effect by moving our eyes around. The experiment result confirms that the CGHs produced by our algorithm can successfully reconstruct 3D images with all the depth cues.”

Link to Publications Page

Publication: Journal of Physics: Conference Series
Issue/Year: J. Phys.: Conf. Ser. 415 012048
DOI: 10.1088/1742-6596/415/1/012048

What spatial light modulators can do for optical microscopy

Author(s): C. Maurer, A. Jesacher, S. Bernet, M. Ritsch-Marte.

Abstract:

“With the availability of high-resolution miniature spatial light modulators (SLMs) new methods in optical microscopy have become feasible. The SLMs discussed in this review consist of miniature liquid crystal displays with micron-sized pixels that can modulate the phase and/or amplitude of an optical wavefront. In microscopy they can be used to control and shape the sample illumination, or they can act as spatial Fourier filters in the imaging path. Some of these applications are reviewed in this article. One of them, called spiral phase contrast, generates isotropic edge enhancement of thin phase samples or spiral-shaped interference fringes for thicker phase samples, which can be used to reconstruct the phase topography from a single on-axis interferogram. If SLMs are used for both illumination control and spatial Fourier filtering, this combination for instance allows for the generalization of the Zernike phase contrast principle. The new SLM-based approach improves the effective resolution and avoids some shortcomings and artifacts of the traditional method. The main advantage of SLMs in microscopy is their flexibility, as one can realize various operation modes in the same setup, without the need for changing any hardware components, simply by electronically switching the phase pattern displayed on the SLMs.”

Link to Publications Page

Publication:Laser & Photonics Reviews
Issue/Year: Laser & Photonics Reviews, Volume 5, Issue 1, pages 81–101, January 2011
DOI: 10.1002/lpor.200900047

3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift

Author(s): Dinesh N. Naik, Takahiro Ezawa, Yoko Miyamoto, and Mitsuo Takeda

Abstract:

“A new image reconstruction scheme for coherence holography using a modified Sagnac-type radial shearing interferometer with geometric phase shift is proposed, and the first experimental demonstration of generic Leith-type coherence holography, which reconstructs off-axis 3-D objects with depth information, is presented. The reconstructed image, represented by a coherence function, can be visualized with a controllable magnification, which opens up a new possibility for a coherence imaging microscope.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Vol. 17, Issue 13, pp. 10633-10641
DOI: 10.1364/OE.17.010633

Programmable ultrashort-pulsed flying images

Author(s): M. Bock, S. K. Das, and R. Grunwald

Abstract:

“We report the generation of programmable two-dimensional arrangements of ultrashort-pulsed fringe-less Bessel-like beams of extended depth of focus (referred to as needle beams) without truncating apertures. A sub-20-fs Ti:sapphire laser and a liquid-crystal-on-silicon spatial light modulator (LCoS-SLM) of high-fidelity temporal transfer in phase-only operation mode were used in the experiments. Axicon profiles with ultrasmall conical angles were approximated by adapted gray scale distributions. It was demonstrated that digitized image information encoded in amplitudephase maps of the needle beams is propagated over considerably large distances at minimal cross talk without the need for additional relay optics. This experiment represents a physical realization of Saari’s proposal of spatio-temporally nondiffracting “flying images” on a few-femtosecond time scale. ”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Vol. 17, Issue 9, pp. 7465-7478
DOI: 10.1364/OE.17.007465

Phase Contrast Projection Display Using Photopolymer

Author(s): Piao, Mei-Lan; Kim, Nam; Park, Jae-Hyeung

Abstract:

“We propose a phase contrast filter using photopolymer, for the phase contrast projection display. The photopolymer has high photosensitivity such that its optically induced refractive index change has a linear dependency on the illuminating light intensity. We implemented a phase contrast projection display using photopolymer as a phase contrast filter. By controlling the refractive index change of the photopolymer, we successfully convert an input phase image into a high contrast intensity image. We also investigated the effect of the photopolymer illumination condition on the quality of the displayed intensity image. As a projector, we achieved 82% phase to intensity conversion efficiency, which implies that the proposed method can potentially have much higher light efficiency than conventional projection display.”

Link to Publications Page

Publication: Journal of the Optical Society of Korea
Issue/Year: Journal of the Optical Society of Korea, Volume 12, Issue 4, December 2008, pp.319-325
DOI: 10.3807/JOSK.2008.12.4.319