Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography

Author(s):

Wu, Peng; Zhang, Dejie; Yuan, Jing; Zeng, Shaoqun; Gong, Hui; Luo, Qingming & Yang, Xiaoquan

Abstract:

“Fluorescence microscopy plays an irreplaceable role in biomedicine. However,

limited depth of field (DoF) of fluorescence microscopy is always an obstacle of image quality,

especially when the sample is with an uneven surface or distributed in different depths. In

this manuscript, we combine deep learning with Fresnel incoherent correlation holography to

describe a method to obtain significant large DoF fluorescence microscopy. Firstly, the hologram

is restored by the Auto-ASP method from out-of-focus to in-focus in double-spherical wave

Fresnel incoherent correlation holography. Then, we use a generative adversarial network to

eliminate the artifacts introduced by Auto-ASP and output the high-quality image as a result.

We use fluorescent beads, USAF target and mouse brain as samples to demonstrate the large

DoF of more than 400µm, which is 13 times better than that of traditional wide-field microscopy.

Moreover, our method is with a simple structure, which can be easily combined with many

existing fluorescence microscopic imaging technology”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 30; Number 4; Pages 5177; 2022
DOI: 10.1364/oe.451409

Scalability of all-optical neural networks based on spatial light modulators

Author(s):

Ying Zuo, Zhao Yujun, You-Chiuan Chen, Shengwang Du & Liu, Junwei

Abstract:

“Optical implementation of artificial neural networks has been attracting great attention due to its potential in parallel computation at speed of light. Although all-optical deep neural networks (AODNNs) with a few neurons have been experimentally demonstrated with acceptable errors re- cently, the feasibility of large scale AODNNs remains unknown because error might accumulate inevitably with increasing number of neurons and connections. Here, we demonstrate a scalable AODNN with programmable linear operations and tunable nonlinear activation functions. We ver- ify its scalability by measuring and analyzing errors propagating from a single neuron to the entire network. The feasibility of AODNNs is further confirmed by recognizing handwritten digits and fashions respectively.”

Link to Publications Page

Publication: Physical Review Applied
Issue/Year: Physical Review Applied, 2021
DOI: https://doi.org/10.1103/PhysRevApplied.15.054034

High-Flexibility Control of Structured Light with Combined Adaptive Optical Systems

Author(s):

Grunwald, Rüdiger; Jurke, Mathias; Bock, Martin; Liebmann, Max; Bruno, Binal Poyyathuruthy; Gowda, Hitesh & Wallrabe, Ulrike

Abstract:

“Combining the specific advantages of high-resolution liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs) and reflective or refractive micro-electro-mechanical systems (MEMS) presents new prospects for the generation of structured light fields. In particular, adaptive self-apodization schemes can significantly reduce diffraction by low-loss spatial filtering. The concept enables one to realize low-dispersion shaping of nondiffracting femtosecond wavepackets and to temporally switch, modulate or deflect spatially structured beams. Adaptive diffraction management by structured illumination is demonstrated for piezo-based and thermally actuated axicons, spiral phase plates (SPPs) and Fresnel bi-mirrors. Improved non-collinear autocorrelation with angular-tunable Fresnel-bi-mirrors via self-apodized illumination and phase contrast of an SLM is proposed. An extension of the recently introduced nondiffractive Talbot effect to a tunable configuration by combining an SLM and a fluid lens is reported. Experimental results for hexagonal as well as orthogonal array beams are presented.”

Link to Publications Page

Publication: Photonics
Issue/Year: Photonics, Volume 9; Number 1; Pages 42; 2022
DOI: 10.3390/photonics9010042

Electro-Optic Modulation of Higher-Order Poincar’e Beam Based on Nonlinear Optical Crystal

Author(s):

Han, Lu; Li, Zhan; Chen, Chao; Sun, Xin; Zhang, Junyong & Liu, Dean

Abstract:

“Vector beams (VBs) have spatially inhomogeneous polarization states distribution and have been widely used in many fields. In this paper, we proposed a method to modulate polarization states of higher-order Poincaré (HOP) beams and designed a system based on Mach-Zehnder interferometers, in which polarization state (include azimuth and ellipticity) of generated HOP beams were modulated by linear electro-optic (EO) effect of nonlinear optical crystals. Using this method, the polarization state of generated HOP beams could be controlled by voltage signal applied on EO crystals, which makes the process of the polarization state change with no optical element moving and mechanical vibrations. Besides, due to the flexibility of the voltage signal, the polarization state could be switched directly and immediately.”

Link to Publications Page

Publication: Photonics
Issue/Year: Photonics, Volume 9; Number 1; Pages 41; 2022
DOI: 10.3390/photonics9010041

Lensless Optical Encryption of Multilevel Digital Data Containers Using Spatially Incoherent Illumination

Author(s):

Cheremkhin, Pavel; Evtikhiev, Nikolay; Krasnov, Vitaly; Ryabcev, Ilya; Shifrina, Anna & Starikov, Rostislav

Abstract:

“The necessity of the correction of errors emerging during the optical encryption process ledto the extensive use of data containers such as QR codes. However, due to specifics of optical encryp-tion, QR codes are not very well suited for the task, which results in low error correction capabilitiesin optical experiments mainly due to easily breakable QR code’s service elements and byte datastructure. In this paper, we present optical implementation of information optical encryption systemutilizing new multilevel customizable digital data containers with high data density. The results ofoptical experiments demonstrate efficient error correction capabilities of the new data container.”

Link to Publications Page

Publication: Applied Sciences
Issue/Year: Applied Sciences, Volume 12; Number 1; Pages 406; 2021
DOI: 10.3390/app12010406

Multi-Incidence Holographic Profilometry for Large Gradient Surfaces with Sub-Micron Focusing Accuracy

Author(s):

Idicula, Moncy Sajeev; Kozacki, Tomasz; Józwik, Michal; Mitura, Patryk; Martinez-Carranza, Juan & Choo, Hyon-Gon

Abstract:

“Surface reconstruction for micro-samples with large discontinuities using digital holog-

raphy is a challenge. To overcome this problem, multi-incidence digital holographic profilometry

(MIDHP) has been proposed. MIDHP relies on the numerical generation of the longitudinal scanning

function (LSF) for reconstructing the topography of the sample with large depth and high axial

resolution. Nevertheless, the method is unable to reconstruct surfaces with large gradients due to

the need of: (i) high precision focusing that manual adjustment cannot fulfill and (ii) preserving

the functionality of the LSF that requires capturing and processing many digital holograms. In this

work, we propose a novel MIDHP method to solve these limitations. First, an autofocusing algorithm

based on the comparison of shapes obtained by the LSF and the thin tilted element approximation is

proposed. It is proven that this autofocusing algorithm is capable to deliver in-focus plane localization

with submicron resolution. Second, we propose that wavefield summation for the generation of the

LSF is carried out in Fourier space. It is shown that this scheme enables a significant reduction of

arithmetic operations and can minimize the number of Fourier transforms needed. Hence, a fast

generation of the LSF is possible without compromising its accuracy. The functionality of MIDHP for

measuring surfaces with large gradients is supported by numerical and experimental results”

Link to Publications Page

Publication: Sensors
Issue/Year: Sensors, Volume 22; Number 1; Pages 214; 2021
DOI: 10.3390/s22010214

Fast 3D Content Update for Wide-Angle Holographic Near-Eye Display

Author(s):

Rafał Kukołowicz; Chlipala, Maksymilian; Martinez-Carranza, Juan; Idicula, Moncy Sajeev & Kozacki, Tomasz

Abstract:

“Near-eye holographic displays are the holy grail of wear-on 3D display devices because they are intended to project realistic wide-angle virtual scenes with parameters matching human vision. One of the key features of a realistic perspective is the ability to move freely around the virtual scene. This can be achieved by addressing the display with wide-angle computer-generated holograms (CGHs) that enable continuous viewpoint change. However, to the best of our knowledge there is no technique able to generate these types of content. Thus, in this work we propose an accurate and non-paraxial hologram update method for wide-angle CGHs that supports continuous viewpoint change around the scene. This method is based on the assumption that with a small change in perspective, two consecutive holograms share overlapping data. This enables reusing the corresponding part of the information from the previous view, eliminating the need to generate an entirely new hologram. Holographic information for the next viewpoint is calculated in two steps: first, a tool approximating the Angular Spectrum Propagation is proposed to generate the hologram data from previous viewpoint; and second, the efficient Phase Added Stereogram algorithm is utilized for generating the missing hologram content. This methodology offers fast and accurate calculations at the same time. Numerical and optical experiments are carried out to support the results of the proposed method.”

Link to Publications Page

Publication: Applied Sciences
Issue/Year: Applied Sciences, Volume 12; Number 1; Pages 293; 2021
DOI: 10.3390/app12010293

Distortion correction for wide angle holographic projector

Author(s):

Jędrzej Szpygiel, Maksymilian Chlipała, Rafał Kukołowicz, Moncy Idicula, Tomasz Kozacki

Abstract:

“This letter presents a distortion correction method enabling a distortion minimized, large size image in a wide angle holographic projector. The technique applies numerical predistortion of an input image used for hologram generation. It is based on estimation of distortion coefficients by comparing optically a reconstructed point test chart with the original one. Obtained experimental results prove that the technique allows reconstruction of high-quality image.”

Link to Publications Page

Publication: Photonics Letters of Poland
Issue/Year: Photonics Letters of Poland, Volume 13; Number 4; Pages 79; 2021
DOI: 10.4302/plp.v13i4.1125

Acceleration of polygon-based computer-generated holograms using look-up tables and reduction of the table size via principal component analysis

Author(s):

Wang, Fan; Shimobaba, Tomoyoshi; Zhang, Yaping; Kakue, Takashi & Ito, Tomoyoshi

Abstract:

“In this study, we first analyze the fully analytical frequency spectrum solving method based on three-dimensional affine transform. Thus, we establish a new method for combining look-up tables (LUTs) with polygon holography. The proposed method was implemented and proved to be accelerated about twice compared to the existing methods. In addition, principal component analysis was used to compress the LUTs, effectively reducing the required memory without artifacts. Finally, we calculated very complex objects on a graphics processing unit using the proposed method, and the calculation speed was higher than that of existing polygon-based methods.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Volume 29; Number 22; Pages 35442; 2021
DOI: 10.1364/oe.435966

Hologram computation using the radial point spread function

Author(s):

Yasuki, Daiki; Shimobaba, Tomoyoshi; Makowski, Michal; Suszek, Jaroslaw; Kakue, Takashi & Ito, Tomoyoshi

Abstract:

“Holograms are computed by superimposing point spread functions (PSFs), which represent the distribution of light on the hologram plane. The computational cost and the spatial bandwidth product required to generate holograms are significant; therefore, it is challenging to compute high-resolution holograms at the rates required for videos. Among the possible displays, fixed-eye-position holographic displays, such as holographic head-mounted displays, reduce the spatial bandwidth product by fixing eye positions while satisfying almost all human depth cues. In eye-fixed holograms, by calculating a part distribution of the entire PSF, we observe reconstructed images that maintain the image quality and the depth of focus almost as high as those generated by the entire PSF. In this study, we accelerate the calculation of eye-fixed holograms by engineering the PSFs. We propose cross and radial PSFs, and we determine that, out of the two, the radial PSFs have a better image quality. By combining the look-up table method and the wavefront-recording plane method with radial PSFs, we show that the proposed method can rapidly compute holograms.”

Link to Publications Page

Publication: Applied Optics
Issue/Year: Applied Optics, Volume 60; Number 28; Pages 8829; 2021
DOI: 10.1364/ao.437777
1 2 3