Generation of composite vortex beams by independent Spatial Light Modulator pixel addressing

Author(s):

Mateusz Szatkowski, Jan Masajada, Ireneusz Augustyniak and Klaudia Nowacka

Abstract:

“The composite optical beams being a result of superposition, are a promising way to study the orbital angular momentum and its effects. Their wide range of applications makes them attractive and easily available due to the growing interest in the Spatial Light Modulators (SLM). In this paper, we present a simple method for generating composite vortex patterns with high symmetry. Our method is simple, flexible and gives perfectly aligned beams, insensitive to mechanical vibrations. This method is based on the ability to split SLM cells between phase patterns that are to be superposed. This approach allows control of the intensity relation between those structures, enables their rotation and is capable to superpose more than two such structures.
In this paper, we examine its ability to produce superposition of two optical vortices by presenting both theoretical and experimental results. ”

Link to Publications Page

Publication: Optics Communications

Issue/Year/DOI: Volume 463
DOI: 10.1016/j.optcom.2020.125341

High-resolution imaging system with an annular aperture of coded phase masks for endoscopic applications

Author(s):

Nitin Dubey, Joseph Rosen, and Israel Gannot

Abstract:

“Partial aperture imaging is a combination of two different techniques; coded aperture imaging and imaging through an aperture that is only a part of the complete disk, commonly used as the aperture of most imaging systems. In the present study, the partial aperture is a ring where the imaging through this aperture resolves small details of the observed scene similarly to the full disk aperture with the same diameter. However, unlike the full aperture, the annular aperture enables using the inner area of the ring for other applications. In this study, we consider the implementation of this special aperture in medical imaging instruments, such as endoscopes, for imaging internal cavities in general and of the human body in particular. By using this annular aperture, it is possible to transfer through the internal open circle of the ring other elements such as surgical tools, fibers and illumination devices. In the proposed configuration, light originated from a source point passes through an annular coded aperture and creates a sparse, randomly distributed, intensity dot pattern on the camera plane. A combination of the dot patterns, each one recorded only once, is used as the point spread hologram of the imaging system. The image is reconstructed digitally by cross correlation between the object intensity response and the point spread hologram.”

Link to Publications Page

Publication: Optics Express

Issue/Year/DOI: Vol. 28, Issue 10, pp. 15122-15137
DOI: 10.1364/OE.391713

Fabrication of oil–water separation copper filter by spatial light modulated femtosecond laser

Author(s):

Xiaoyan Sun, Zhuolin Dong, Kaifan Cheng, Dongkai Chu, Dejian Kong, Youwang Hu and Ji’an Duan

Abstract:

“Surface with oil–water separation performance has attracted more and more attention in the application of oil-containing wastewater purification. Much related work has been done by many researchers. However, there are still many difficulties in rapid manufacturing of filter membranes with special wettability. In this paper, an efficient, flexible method to fabricate microporous arrays by using a femtosecond (fs) laser combined with a spatial light modulator is proposed. The laser treated copper sheet surface shows hydrophobic and superoleophilic properties due to the microstructure. Meanwhile, the array of micro-through-holes on the surface can allow oil to penetrate through holes and prevent water from penetrating. The manufacturing process is not only extremely efficient, with a 10 × 10 focus array used in the ablation, but also it is without chemical method and the filter presents a long-term stable hydrophobic and superoleophilic performance.”

Link to Publications Page

Publication: Journal of Micromechanics and Microengineering

Issue/Year/DOI: Volume 30, Number 6
DOI: 10.1088/1361-6439/ab870d

Experimental optical trapping of micro-particles with Frozen Waves

Author(s):

Rafael A. B. Suarez and Antonio A. R. Neves and Marcos R. R. Gesualdi and Leonardo A. Ambrosio and Michel Zamboni-Rached

Abstract:

“This work presents the first optical trapping experimental demonstration of micro-particles with Frozen Waves. Frozen Waves are an efficient method to model longitudinally the intensity of non-diffracting beams obtained by superposing co-propagating Bessel beams with the same frequency and order. The experimental setup of a holographic optical tweezers using spatial light modulators has been assembled and optimized. We investigate the optical force distribution acting on micro-particles of two types of Frozen Waves.The results show that it is possible to obtain greater stability for optical trapping using Frozen Waves. The significant enhancement in trapping geometry from this approach shows promising applications for optical tweezers, micro-manipulations over a broad range. ”

Link to Publications Page

Publication: Optics Letters
Issue/Year/DOI: Vol. 45, Issue 9, pp. 2514-2517
DOI: 10.1364/OL.390909

Amplitude-phase optimized long depth of focus femtosecond axilens beam for single-exposure fabrication of high-aspect-ratio microstructures

Author(s):

Deng Pan, Bing Xu, Shunli Liu, Jiawen Li, Yanlei Hu, Dong Wu, and Jiaru Chu

Abstract:

“Fabrication of high-aspect-ratio (HAR) micro/nanostructures by two-photon polymerization (TPP) has become a hot topic because of the advantages of ultra-high resolution and true 3D printing ability. However, the low efficiency caused by point-by-point scanning strategy limits its application. In this Letter, we propose a strategy for the rapid fabrication of HAR microstructures by combining TPP with an amplitude-phase optimized long depth of focus laser beam (LDFB). The optimization of the LDFB is implemented by modulating the amplitude and phase on a phase-only spatial light modulator, which can suppress the side lobe and smooth energy oscillations effectively. The LDFB is used for rapid fabrication of HAR micropillars and various microstructures, which greatly increases the fabrication efficiency. As a demonstration, several typical HAR microstructures such as assemblies, microchannels, microtubes, and cell scaffolds are prepared. Moreover, the microcapture arrays are rapidly fabricated for the capture of microspheres and the formation of microlens arrays, which show focusing and imaging ability.”

Link to Publications Page

Publication: Optics Letters
Issue/Year/DOI: Vol. 45, Issue 9, pp. 2584-2587 (2020)
DOI: 10.1364/OL.389946

Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers

Author(s):

Yanan Cai, Shaohui Yan, Zhaojun Wang, Runze Li, Yansheng Liang, Yuan Zhou, Xing Li, Xianghua Yu, Ming Lei and Baoli Yao

Abstract:

“Benefitting from the development of commercial spatial light modulator (SLM), holographic optical tweezers (HOT) have emerged as a powerful tool for life science, material science and particle physics. The calculation of computer-generated holograms (CGH) for generating multi-focus arrays plays a key role in HOT for trapping of a bunch of particles in parallel. To realize dynamic 3D manipulation, we propose a new tilted-plane GS algorithm for fast generation of multiple foci. The multi-focal spots with a uniformity of 99% can be generated in a tilted plane. The computation time for a CGH with 512512 pixels is less than 0.1 second.
We demonstrated the power of the algorithm by simultaneously trapping and rotating silica beads with a 77 spots array in three dimensions. The presented algorithm is expected as a powerful kernel of HOT.”

Link to Publications Page

Publication: Optics Express

Issue/Year/DOI: Vol. 28, Issue 9, pp. 12729-12739
DOI: 10.1364/OE.389897

Anomalous ring-connected optical vortex array

Author(s):

Xinzhong Li and Hao Zhang

Abstract:

“In this study, an anomalous ring-connected optical vortex array (ARC-OVA) via the superposition of two grafted optical vortices (GOVs) with different topological charges (TCs) has been proposed. Compared with conventional OVAs, the signs and distribution of the OVs can be individually modulated, while the number of OVs remains unchanged. In particular, the positive and negative OVs simultaneously appear in the same intensity ring. Additionally, the size of the dark core occupied by the OV can be modulated, and the specific dark core is shared by a pair of plus–minus OVs. This work deepens our knowledge about connected OVAs and facilitates new potential applications, especially in particle manipulation and optical measurement.”

Link to Publications Page

Publication: Optics Express

Issue/Year/DOI: Vol. 28, Issue 9, pp. 13775-13785
DOI: 10.1364/OE.390985

Non-iterative phase hologram generation with optimized phase modulation

Author(s):

Lizhi Chen, Hao Zhang, Liangcai Cao and Guofan Jin

Abstract:

“A non-iterative algorithm is proposed to generate phase holograms with optimized phase modulation. A quadratic initial phase with continuous distributed spectrum is utilized to iteratively optimize the phase modulation in the reconstruction plane, which can be used as an optimized phase distribution for arbitrary target images. The phase hologram can be calculated directly according to the modulated wave field distribution in the reconstruction plane. Fast generation of the phase holograms can be achieved by this non-iterative implementation, and the avoidance of the random phase modulation helps to suppress the speckle noise. Numerical and
optical experiments have demonstrated that the proposed method can efficiently generate phase holograms with quality reconstructions.”

Link to Publications Page

Publication: Optics Express

Issue/Year/DOI: Vol. 28, Issue 8, pp. 11380-11392
DOI: 10.1364/OE.391518

Entangled qutrits generated in four-wave mixing without post-selection

Author(s):

Shuai Shi, Ming-Xin Dong, Yi-Chen Yu, Ying-Hao Ye, Wei Zhang, Kai Wang, Guang-Can Guo, Dong-Sheng Ding and Bao-Sen Shi

Abstract:

“High-dimensional entangled states and quantum repeaters are important elements in efficient long-range quantum communications. The high-dimensional property associated with the orbital angular momentum (OAM) of each photon improves the bandwidth of the quantum communication network. However, the generation of high-dimensional entangled states by the concentration method reduces the brightness of the entangled light source, making extensions to these higher dimensions difficult. To overcome this difficulty, we propose to generate entangled qutrits in the OAM space by loading the pump light with OAM. Compared with the concentration method, our experimental results show that the rate of generation of photon pairs improves significantly with an observed 5.5-fold increase. The increased generation rate provides the system with the ability to resist the noise and improve the fidelity of the state. The S value of the Clauser–Horne–Shimony–Holt inequality increases from 2.48 ± 0.07 to 2.69 ± 0.04 under the same background noise, and the fidelity of the reconstructed density matrix improves from 57.8 ± 0.14% to 70 ± 0.17%. These achievements exhibit the enormous advantages of high-dimensional entanglement generation.”

Link to Publications Page

Publication: Optics Express

Issue/Year/DOI: Vol. 28, Issue 8, pp. 11538-11547
DOI: 10.1364/OE.383378

Three-dimensional laser damage positioning by a deep-learning method

Author(s):

Zhan Li and Lu Han and Xiaoping Ouyang and Pan Zhang and Yajing Guo and Dean Liu and Jianqiang Zhu

Abstract:

“A holographic and deep learning-based method is presented for three-dimensional
laser damage location. The axial damage position is obtained by numerically focusing the
diffraction ring into the conjugate position. A neural network Diffraction-Net is proposed to
distinguish the diffraction ring from different surfaces and positions and obtain the lateral position.
Diffraction-Net, which is completely trained by simulative data, can distinguish the diffraction
rings with an overlap rate greater than 61% which is the best of results reported. In experiments,
the proposed method first achieves the damage pointing on each surface of cascade slabs using
diffraction rings, and the smallest inspect damage size is 8μm. A high precision result with the
lateral positioning error less than 38.5μm and axial positioning error less than 2.85mm illustrates
the practicability for locating the damage sites at online damage inspection.”

Link to Publications Page

Publication: Optics Express
Issue/Year/DOI: Vol. 28, Issue 7, pp. 10165-10178
DOI: 10.1364/OE.387987