Luwei Wang, Wei Yan, Runze Li, Xiaoyu Weng, Jia Zhang, Zhigang Yang, Liwei Liu, Tong Ye and Junle Qu


“With a purely optical modulation of fluorescent behaviors, stimulated emission depletion (STED) microscopy allows for far-field imaging with a diffraction-unlimited resolution in theory. The performance of STED microscopy is affected by many factors, of which aberrations induced by the optical system and biological samples can distort the wave front of the depletion beam at the focal plane to greatly deteriorate the spatial resolution and the image contrast. Therefore, aberration correction is imperative for STED imaging, especially for imaging thick specimens. Here, we present a wave front compensation approach based on the genetic algorithm (GA) to restore the distorted laser wave front for improving the quality of STED images. After performing aberration correction on two types of zebrafish samples, the signal intensity and the imaging resolution of STED images were both improved, where the thicknesses were 24 μm and 100 μm in the zebrafish retina sample and the zebrafish embryo sample, respectively. The results showed that the GA-based wave front compensation approach has the capability of correction for both system-induced and sample-induced aberrations. The elimination of aberrations can prompt STED imaging in deep tissues; therefore, STED microscopy can be expected to play an increasingly important role in super-resolution imaging related to the scientific research in biological fields.”

Link to Publications Page

Publication: Nanophotonics Volume 7: Issue 12

Issue/Year/DOI: Volume 7: Issue 12
DOI: 10.1515/nanoph-2018-0133