High-resolution surface plasmon resonance holographic microscopy based on symmetrical excitation

Author(s):

Dou, Jiazhen; Dong, Chen; Dai, Siqing; Mi, Jingyu; Luo, Xiangyuan; Di, Jianglei; Zhang, Jiwei & Zhao, Jianlin

Abstract:

“Surface plasmon resonance holographic microscopy (SPRHM) is able to simultaneously obtain the amplitude- and phase-contrast surface plasmon resonance (SPR) images, showing great potentials in imaging near-field targets with high sensitivity. However, suffered by the decaying length of surface plasmon wave which can be as long as tens of microns, the spatial resolution of SPRHM is lower than that of traditional holographic microscopy. In this work, we propose to enhance the spatial resolution in SPRHM by exciting surface plasmon resonance in two symmetrical directions and detecting the complex amplitudes of the reflected light symmetrically. Through the Fourier analysis of the recorded composite hologram, the reconstruction schemes for high-resolution amplitude- and phase-contrast SPR images are established, respectively. The feasibility and advantages of the proposed method is verified by numerical simulations and experimental demonstrations of small-size particles and micro-structures.”

Link to Publications Page

Publication: Optics and Lasers in Engineering
Issue/Year: Optics and Lasers in Engineering, Volume 153; Pages 107000; 2022
DOI: 10.1016/j.optlaseng.2022.107000

Pixel Super-Resolution Phase Retrieval for Lensless On-Chip Microscopy via Accelerated Wirtinger Flow

Author(s):

Gao, Yunhui; Yang, Feng & Cao, Liangcai

Abstract:

“Empowered by pixel super-resolution (PSR) and phase retrieval techniques, lensless onchip microscopy opens up new possibilities for high-throughput biomedical imaging. However, the current PSR phase retrieval approaches are time consuming in terms of both the measurement and reconstruction procedures. In this work, we present a novel computational framework for PSR phase retrieval to address these concerns. Specifically, a sparsity-promoting regularizer is introduced to enhance the well posedness of the nonconvex problem under limited measurements, and Nesterov’s momentum is used to accelerate the iterations. The resulting algorithm, termed accelerated Wirtinger flow (AWF), achieves at least an order of magnitude faster rate of convergence and allows a twofold reduction in the measurement number while maintaining competitive reconstruction quality. Furthermore, we provide general guidance for step size selection based on theoretical analyses, facilitating simple implementation without the need for complicated parameter tuning. The proposed AWF algorithm is compatible with most of the existing lensless on-chip microscopes and could help achieve label-free rapid whole slide imaging of dynamic biological activities at subpixel resolution.”

Link to Publications Page

Publication: Cells
Issue/Year: Cells, Volume 11; Number 13; Pages 1999; 2022
DOI: 10.3390/cells11131999

Laser Diffraction Zones and Spots from Three-Dimensional Graded Photonic Super-Crystals and Moir’e Photonic Crystals

Author(s):

Hurley, Noah; Kamau, Steve; Alnasser, Khadijah; Philipose, Usha; Cui, Jingbiao & Lin, Yuankun

Abstract:

“The laser diffraction from periodic structures typically shows isolated and sharp point patterns at zeroth and ±nth orders. Diffraction from 2D graded photonic super-crystals (GPSCs) has demonstrated over 1000 spots due to the fractional diffractions. Here, we report the holographic fabrication of three types of 3D GPSCs through nine beam interferences and their characteristic diffraction patterns. The diffraction spots due to the fractional orders are merged into large-area diffraction zones for these three types of GPSCs. Three distinguishable diffraction patterns have been observed: (a) 3 × 3 Diffraction zones for GPSCs with a weak gradient in unit super-cell, (b) 5 × 5 non-uniform diffraction zones for GPSCs with a strong modulation in long period and a strong gradient in unit super-cell, (c) more than 5 × 5 uniform diffraction zones for GPSCs with a medium gradient in unit super-cell and a medium modulation in long period. The GPSCs with a strong modulation appear as moiré photonic crystals. The diffraction zone pattern not only demonstrates a characterization method for the fabricated 3D GPSCs, but also proves their unique optical properties of the coupling of light from zones with 360◦ azimuthal angles and broad zenith angles.”

Link to Publications Page

Publication: Photonics
Issue/Year: Photonics, Volume 9; Number 6; Pages 395; 2022
DOI: 10.3390/photonics9060395

Generation of controllable spectrum in multiple positions from speckle patterns

Author(s):

Li, Haoran; Wu, Xiaoyan; Liu, Guodong; Vinu, R. V.; Wang, Xiaoyan; Chen, Ziyang & Pu, Jixiong

Abstract:

“Feedback-based wavefront shaping has been proposed to modulate the speckle field generated by coherent light transmitting through scattering media. Different from a monochromatic light, a colorful speckle pattern is generated when polychromatic light transmits through scattering media. Although single-position spectrum modulation has been realized, multiple-position spectrum modulation is a much more complicated problem. Based on non-dominated sorting genetic algorithm II (NSGA2), we design a step-by-step strategy to solve this problem. The results show that modulated spectra in two spatial positions with controllable spectral shape, range and magnitude can be achieved. This research is expected to be applied in the field of adaptive spectral control ranging from advanced spectral filtering to optical fiber dispersion and multi-spectral imaging.”

Link to Publications Page

Publication: Optics & Laser Technology
Issue/Year: Optics & Laser Technology, Volume 149; Pages 107820; 2022
DOI: 10.1016/j.optlastec.2021.107820

Control of trion-to-exciton conversion in monolayer WS2 by orbital angular momentum of light

Author(s):

Kesarwani, Rahul; Simbulan, Kristan Bryan; Huang, Teng-De; Chiang, Yu-Fan; Yeh, Nai-Chang; Lan, Yann-Wen & Lu, Ting-Hua

Abstract:

“Controlling the density of exciton and trion quasiparticles in monolayer two-dimensional (2D) materials at room temperature by nondestructive techniques is highly desired for the development of future optoelectronic devices. Here, the effects of different orbital angular momentum (OAM) lights on monolayer tungsten disulfide at both room temperature and low temperatures are investigated, which reveal simultaneously enhanced exciton intensity and suppressed trion intensity in the photoluminescence spectra with increasing topological charge of the OAM light. In addition, the trion-to-exciton conversion efficiency is found to increase rapidly with the OAM light at low laser power and decrease with increasing power. Moreover, the trion binding energy and the concentration of unbound electrons are estimated, which shed light on how these quantities depend on OAM. A phenomenological model is proposed to account for the experimental data. These findings pave a way toward manipulating the exciton emission in 2D materials with OAM light for optoelectronic applications.”

Link to Publications Page

Publication: Science Advances
Issue/Year: Science Advances, Volume 8; Number 13; 2022
DOI: 10.1126/sciadv.abm0100

Adaptive Detection of Wave Aberrations Based on the Multichannel Filter

Author(s):

Khorin, Pavel A.; Porfirev, Alexey P. & Khonina, Svetlana N.

Abstract:

“An adaptive method for determining the type and magnitude of aberration in a wide range is proposed on the basis of an optical processing of the analyzed wavefront using a multichannel filter matched to the adjustable Zernike phase functions. The approach is based on an adaptive (or step-by-step) compensation of wavefront aberrations based on a dynamically tunable multichannel filter implemented on a spatial light modulator. For adaptive filter adjustment, a set of criteria is proposed that takes into account not only the magnitude of the correlation peak, but also the maximum intensity, compactness, and orientation of the distribution in each diffraction order. The experimental results have shown the efficiency of the proposed approach for detecting wavefront aberrations in a wide range (from 0.1 λ to λ).”

Link to Publications Page

Publication: Photonics
Issue/Year: Photonics, Volume 9; Number 3; Pages 204; 2022
DOI: 10.3390/photonics9030204

Hogel-free Holography

Author(s):

Chakravarthula, Praneeth; Tseng, Ethan; Fuchs, Henry & Heide, Felix

Abstract:

“Holography is a promising avenue for high-quality displays without requiring bulky, complex optical systems. While recent work has demonstrated accurate hologram generation of 2D scenes, high-quality holographic projections of 3D scenes has been out of reach until now. Existing multiplane 3D holography approaches fail to model wavefronts in the presence of partial occlusion while holographic stereogram methods have to make a fundamental trade of between spatial and angular resolution. In addition, existing 3D holographic display methods rely on heuristic encoding of complex amplitude into phase-only pixels which results in holograms with severe artifacts. Fundamental limitations of the input representation, wavefront modeling, and optimization methods prohibit artifact-free 3D holographic projections in today’s displays. To lift these limitations, we introduce hogel-free holography which optimizes for true 3D holograms, supporting both depth- and view- dependent efects for the irst time. Our approach overcomes the fundamental spatio-angular resolution trade-of typical to stereogram approaches. Moreover, it avoids heuristic encoding schemes to achieve high image idelity over a 3D volume. We validate that the proposed method achieves 10 dB PSNR improvement on simulated holographic reconstructions. We also validate our approach on an experimental prototype with accurate parallax and depth focus efects”

Link to Publications Page

Publication: ACM Transactions on Graphics
Issue/Year: ACM Transactions on Graphics, 2022
DOI: 10.1145/3516428

Multiplexed two-photon excitation spectroscopy of single gold nanorods

Author(s):

Vlieg, Redmar C. & van Noort, John

Abstract:

“Plasmonic metallic nanoparticles are commonly used in (bio-)sensing applications because their localized surface plasmon resonance is highly sensitive to changes in the environment. Although optical detection of scattered light from single particles provides a straightforward means of detection, the two-photon luminescence (TPL) of single gold nanorods (GNRs) has the potential to increase the sensitivity due to the large anti-Stokes shift and the non-linear excitation mechanism. However, two-photon microscopy and spectroscopy are restricted in bandwidth and have been limited by the thermal stability of GNRs. Here, we used a scanning multi-focal microscope to simultaneously measure the two-photon excitation spectra of hundreds of individual GNRs with sub-nanometer accuracy. By keeping the excitation power under the melting threshold, we show that GNRs were stable in intensity and spectrum for more than 30 min, demonstrating the absence of thermal reshaping. Spectra featured a signal-to-noise ratio of >10 and a plasmon peak width of typically 30 nm. Changes in the refractive index of the medium of less than 0.04, corresponding to a change in surface plasmon resonance of 8 nm, could be readily measured and over longer periods. We used this enhanced spectral sensitivity to measure the presence of neutravidin, exploring the potential of TPL spectroscopy of single GNRs for enhanced plasmonic sensing.”

Link to Publications Page

Publication: The Journal of Chemical Physics
Issue/Year: The Journal of Chemical Physics, Volume 156; Number 9; Pages 094201; 2022
DOI: 10.1063/5.0073208