Three-dimensional laser damage positioning by a deep-learning method

Author(s):

Zhan Li and Lu Han and Xiaoping Ouyang and Pan Zhang and Yajing Guo and Dean Liu and Jianqiang Zhu

Abstract:

“A holographic and deep learning-based method is presented for three-dimensional
laser damage location. The axial damage position is obtained by numerically focusing the
diffraction ring into the conjugate position. A neural network Diffraction-Net is proposed to
distinguish the diffraction ring from different surfaces and positions and obtain the lateral position.
Diffraction-Net, which is completely trained by simulative data, can distinguish the diffraction
rings with an overlap rate greater than 61% which is the best of results reported. In experiments,
the proposed method first achieves the damage pointing on each surface of cascade slabs using
diffraction rings, and the smallest inspect damage size is 8μm. A high precision result with the
lateral positioning error less than 38.5μm and axial positioning error less than 2.85mm illustrates
the practicability for locating the damage sites at online damage inspection.”

Link to Publications Page

Publication: Optics Express
Issue/Year/DOI: Vol. 28, Issue 7, pp. 10165-10178
DOI: 10.1364/OE.387987

Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter

Author(s):

Guoqiang Huang and Daixuan Wu and Jiawei Luo and Yin Huang and Yuecheng Shen

Abstract:

” Characterizing the transmission matrix (TM) of a multimode fiber (MMF) benefits many fiber-based applications and allows in-depth studies on the physical properties. For example, by modulating the incident field, the knowledge of the TM allows one to synthesize
any optical field at the distill end of the MMF. However, the extraction of optical fields usually requires holographic measurements with interferometry, which complicates the system design and introduces additional noise. In this work, we developed an efficient method to retrieve the TM of the MMF in a referenceless optical system. With pure intensity measurements, this method uses the extended Kalman filter (EKF) to recursively search for the optimum solution. To facilitate the computational process, a modified speckle-correlation scatter matrix (MSSM) is constructed as a low-fidelity initial estimation. This method, termed EKF-MSSM, only requires 4N intensity measurements to precisely solve for N unknown complex variables in the TM. Experimentally, we successfully retrieved the TM of the MMF with high precision, which allows optical focusing with the enhancement (>70%) close to the theoretical value. We anticipate that this method will serve as a useful tool for studying physical properties of the MMFs and potentially open new possibilities in a variety of applications in fiber optics.”

Link to Publications Page

Publication: Optics Express
Issue/Year/DOI: Vol. 28, Issue 7, pp. 9487-9500
DOI: 10.1364/OE.389133