Nonlinear Imaging using Object-Dependent Illumination

Author(s):

Jen-Tang Lu, Alexandre S. Goy and Jason W. Fleischer

Abstract:

“Nonlinear imaging systems can surpass the limits of linear optics, but nearly all rely on physical media and atomic/molecular response to work. These materials are constrained by their physical properties, such as frequency selectivity, environmental sensitivity, time behavior, and fixed nonlinear response. Here, we show that electro-optic spatial light modulators (SLMs) can take the place of traditional nonlinear media, provided that there is a feedback between the shape of the object and the pattern on the modulator. This feedback creates a designer illumination that generalizes the field of adaptive optics to include object-dependent patterns. Unlike physical media, the SLM response can provide a wide range of mathematical functions, operate over broad bandwidths at high speeds, and work equally well at high power and single-photon levels. We demonstrate the method experimentally for both coherent and incoherent light.”

Link to Publications Page

Publication: Scientific Reports
Issue/Year: Scientific Reports Volume 9, Article number: 725 (2019)
DOI: 10.1038/s41598-018-37030-7

Raman imaging through multimode sapphire fiber

Author(s):

Sunan Deng, Damien Loterie, Georgia Konstantinou, Demetri Psaltis, and Christophe Moser
Abstract:

“We report on a sapphire fiber Raman imaging probe’s use for challenging applications where access is severely restricted. Small-dimension Raman probes have been developed previously for various clinical applications because they show great capability for diagnosing disease states in bodily fluids, cells, and tissues. However, applications of these sub-millimeter diameter Raman probes were constrained by two factors: first, it is difficult to incorporate filters and focusing optics at such small scale; second, the weak Raman signal is often obscured by strong background noise from the fiber probe material, especially the most commonly used silica, which has a strong broad background noise in low wavenumbers (<500-1700 cm−1). Here, we demonstrate the thinnest-known imaging Raman probe with a 60 μm diameter Sapphire multimode fiber in which both excitation and signal collection pass through. This probe takes advantage of the low fluorescence and narrow Raman peaks of Sapphire, its inherent high temperature and corrosion resistance, and large numerical aperture (NA). Raman images of Polystyrene beads, carbon nanotubes, and CaSO4 agglomerations are obtained with a spatial resolution of 1 μm and a field of view of 30 μm. Our imaging results show that single polystyrene bead (~15 µm diameter) can be differentiated from a mixture with CaSO4 agglomerations, which has a close Raman shift.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Vol. 27, Issue 2, pp. 1090-1098 (2019)
DOI: 10.1364/OE.27.001090