On-Chip Detection of Orbital Angular Momentum Beam by Plasmonic Nanogratings

Author(s):

Ji Chen and Xi Chen and Tao Li and Shining Zhu

Abstract:

“Thanks to the unlimited orthogonal states, the orbital angular momentum (OAM) light is widely accepted as a promising carrier for high information multiplexing in optical communications, in which the OAM detection is an important issue. To keep up with the ever‐growing demand for compact integration, here, a plasmonic grating is employed to spatially couple the OAM modes into two separated propagating surface plasmon polariton (SPP) beams with different splitting angles. These splitting angles are found to strongly rely on the topological charges of the incident beams and are insensitive to the specific location of the OAM beam illumination, which provides an intuitive detection of the OAM modes without particular alignment. Besides, a further unidirectional SPP launching from the OAM beam is also achieved by a particular composite grating. With such composite grating, both the topological charge value and sign of OAM beam in a single measurement can be detected. Our results provide a convenient method for alignment‐free OAM detection by a compact device, and would inspire more multiplexing applications in nanophotonics.”

Link to Publications Page

Publication: Laser & Photonics Reviews
Issue/Year: Laser & Photonics Reviews Volume 12, Issue 8 (2018)
DOI: 10.1002/lpor.201700331

Wide-field in situ multiplexed Raman imaging with superresolution

Author(s):

Houkai Chen and Xiaojing Wu and Yuquan Zhang and Yong Yang and Changjun Min and Siwei Zhu and Xiaocong Yuan and Qiaoliang Bao and Jing Bu

Abstract:

“Because of the fingerprint-like specificity of its characteristic spectrogram, Raman spectral imaging has been applied widely in various research areas. Using a combination of structured illumination with the surfaceenhanced Raman scattering (SERS) technique, wide-field Raman imaging is developed with a significant improvement in spatial resolution. As a result of the relatively narrow Raman characteristic peaks, optically encoded SERS nanoparticles can be used to perform multiplexed imaging. The results show excellent superresolution wide-field multiplexed imaging performance. The developed technique has extraordinary potential for applications in biological imaging and other related fields.”

Link to Publications Page

Publication: Photonics Research
Issue/Year: Photonics Research Volume 6, Issue 6 pp. 530-534
DOI: 10.1364/PRJ.6.000530

Micro-Dumbbells—A Versatile Tool for Optical Tweezers

Author(s):

Weronika Lamperska, Sławomir Drobczyński, Michał Nawrot, Piotr Wasylczyk, Jan Masajada

Abstract:

“Manipulation of micro- and nano-sized objects with optical tweezers is a well-established, albeit still evolving technique. While many objects can be trapped directly with focused laser beam(s), for some applications indirect manipulation with tweezers-operated tools is preferred. We introduce a simple, versatile micro-tool operated with holographic optical tweezers. The 40 µm long dumbbell-shaped tool, fabricated with two-photon laser 3D photolithography has two beads for efficient optical trapping and a probing spike on one end. We demonstrate fluids viscosity measurements and vibration detection as examples of possible applications.”

Link to Publications Page

Publication: Micromachines
Issue/Year: Micromachines Volume 9, Issue 6
DOI: 10.3390/mi9060277

Particle trapping and conveying using an optical Archimedes’ screw

Author(s):

Barak Hadad and Sahar Froim and Harel Nagar and Tamir Admon and Yaniv Eliezer and Yael Roichman and Alon Bahabad

Abstract:

“Trapping and manipulation of particles using laser beams has become an important tool in diverse fields of research. In recent years, particular interest has been devoted to the problem of conveying optically trapped particles over extended distances either downstream or upstream of the direction of photon momentum flow. Here, we propose and experimentally demonstrate an optical analog of the famous Archimedes’ screw where the rotation of a helical-intensity beam is transferred to the axial motion of optically trapped micrometer-scale, airborne, carbon-based particles. With this optical screw, particles were easily conveyed with controlled velocity and direction, upstream or downstream of the optical flow, over a distance of half a centimeter. Our results offer a very simple optical conveyor that could be adapted to a wide range of optical trapping scenarios.”

Link to Publications Page

Publication: Optica
Issue/Year: Optica Vol. 5, Issue 5, pp. 551-556 (2018)
DOI: 10.1364/OPTICA.5.000551

Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light

Author(s):

Dorrah, Ahmed H and Zamboni-Rached, Michel and Mojahedi, Mo

Abstract:

“The index of refraction plays a decisive role in the design and classification of optical materials and devices; therefore, its proper and accurate determination is essential. In most refractive index (RI) sensing schemes, however, there is a trade-off between providing high-resolution measurements and covering a wide range of RIs. We propose and experimentally demonstrate a novel mechanism for sensing the index of refraction of a medium by utilizing the orbital angular momentum (OAM) of structured light. Using a superposition of co-propagating monochromatic higher order Bessel beams with equally spaced longitudinal wavenumbers, in a comb-like setting, we generate nondiffracting rotating light structures in which the orientation of the beam’s intensity profile is sensitive to the RI of the medium (here, a fluid). In principle, the sensitivity of this scheme can exceed ∼ 2700°/RIU with a resolution of ∼ 10-5 RI unit (RIU). Furthermore, we show how the unbounded degrees of freedom associated with OAM can be deployed to offer a wide dynamic range by generating structured light that evolves into different patterns based on the change in RI. The rotating light structures are generated by a programmable spatial light modulator (SLM). This provides dynamic control over the sensitivity, which can be tuned to perform coarse or fine measurements of the RI in real time. This, in turn, allows high sensitivity and resolution to be achieved simultaneously over a very wide dynamic range, which is a typical trade-off in all RI sensing schemes. We thus envision that this method will open new directions in refractometry and remote sensing.”

Link to Publications Page

Publication: Light: Science \& Applications
Issue/Year: Light: Science & Applications accepted article preview 18 May 2018
DOI: 10.1038/s41377-018-0034-9

Three-dimensional vectorial multifocal arrays created by pseudo-period encoding

Author(s):

Tingting Zeng and Chenliang Chang and Zhaozhong Chen and Hui-Tian Wang and Jianping Ding

Abstract:

“Multifocal arrays have been attracting considerable attention recently owing to their potential applications in parallel optical tweezers, parallel single-molecule orientation determination, parallel recording and multifocal multiphoton microscopy. However, the generation of vectorial multifocal arrays with a tailorable structure and polarization state remains a great challenge, and reports on multifocal arrays have hitherto been restricted either to scalar focal spots without polarization versatility or to regular arrays with fixed spacing. In this work, we propose a specific pseudo-period encoding technique to create three-dimensional (3D) vectorial multifocal arrays with the ability to manipulate the position, polarization state and intensity of each focal spot. We experimentally validated the flexibility of our approach in the generation of 3D vectorial multiple spots with polarization multiplicity and position tunability.”

Link to Publications Page

Publication: Journal of Optics
Issue/Year: Journal of Optics, Volume 20, Number 6
DOI: 10.1088/2040-8986/aac1de

Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms

Author(s):

Liu, Tsung-Li and Upadhyayula, Srigokul and Milkie, Daniel E. and Singh, Ved and Wang, Kai and Swinburne, Ian A. and Mosaliganti, Kishore R. and Collins, Zach M. and Hiscock, Tom W. and Shea, Jamien and Kohrman, Abraham Q. and Medwig, Taylor N. and Dambournet, Daphne and Forster, Ryan and Cunniff, Brian and Ruan, Yuan and Yashiro, Hanako and Scholpp, Steffen and Meyerowitz, Elliot M. and Hockemeyer, Dirk and Drubin, David G. and Martin, Benjamin L. and Matus, David Q. and Koyama, Minoru and Megason, Sean G. and Kirchhausen, Tom and Betzig, Eric

Abstract:

“True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.”

Link to Publications Page

Publication: Science
Issue/Year: Science, Vol. 360, Issue 6386, (2018)
DOI: 10.1126/science.aaq1392

Generation of optical vortex array along arbitrary curvilinear arrangement

Author(s):

Lin Li and Chenliang Chang and Xiangzheng Yuan and Caojin Yuan and Shaotong Feng and Shouping Nie and Jianping Ding

Abstract:

“We propose an approach for creating optical vortex array (OVA) arranged along arbitrary curvilinear path, based on the coaxial interference of two width-controllable component curves calculated by modified holographic beam shaping technique. The two component curve beams have different radial dimensions as well as phase gradients along each beam such that the number of phase singularity in the curvilinear arranged optical vortex array (CA-OVA) is freely tunable on demand. Hybrid CA-OVA that comprises of multiple OVA structures along different respective curves is also discussed and demonstrated. Furthermore, we study the conversion of CA-OVA into vector mode that comprises of polarization vortex array with varied polarization state distribution. Both simulation and experimental results prove the performance of the proposed method of generating a complex structured vortex array, which is of significance for potential applications including multiple trapping of micro-sized particles.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Vol.26, Issue 8, pp. 9798- 9812 (2018)
DOI: 10.1364/OE.26.009798

Lensless Stokes holography with the Hanbury Brown-Twiss approach

Author(s):

Darshika Singh and Rakesh Kumar Singh

Abstract:

“The recording and reconstruction of the Stokes parameter is of paramount importance for the description of the vectorial interference of light. Polarization holography provides a complete vectorial wavefront, however, direct recording and reconstruction of the hologram is not possible in a situation where the object is located behind the random scattering layer. The Stokes holography plays an important role in such situations and makes use of the Fourier transform relation between the Stokes parameters (SPs) at the scattering plane and the generalized Stokes parameters (GSPs) of the random field. In this paper, we propose and experimentally demonstrate the Stokes holography with the Hanbury Brown-Twiss (HBT) interferometer. We also propose and implement a lensless Fourier configuration for the Stokes holography. This permits us to reconstruct the wavefront from the GSPs at any arbitrary distance from the scattering plane. The application of the proposed technique is experimentally demonstrated for the 3D imaging of two different objects lying behind the random scattering medium. Depth information of the 3D objects is obtained by digitally propagating the generalized Stokes parameters to a different longitudinal distance. The quality of the reconstruction is assessed by measuring the overall visibility, efficiency, and PSNR of the reconstruction parameters.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Vol. 26, Issue 8, pp. 10801-10812 (2018)
DOI: 10.1364/OE.26.010801

Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm

Author(s):

Peng Sun and Shengqian Chang and Siqi Liu and Xiao Tao and Chang Wang and Zhenrong Zheng

Abstract:

“In this paper, a method is proposed to implement noises reduced three-dimensional (3D) holographic near-eye display by phase-only computer-generated hologram (CGH). The CGH is calculated from a double-convergence light Gerchberg-Saxton (GS) algorithm, in which the phases of two virtual convergence lights are introduced into GS algorithm simultaneously. The first phase of convergence light is a replacement of random phase as the iterative initial value and the second phase of convergence light will modulate the phase distribution calculated by GS algorithm. Both simulations and experiments are carried out to verify the feasibility of the proposed method. The results indicate that this method can effectively reduce the noises in the reconstruction. Field of view (FOV) of the reconstructed image reaches 40 degrees and experimental light path in the 4-f system is shortened. As for 3D experiments, the results demonstrate that the proposed algorithm can present 3D images with 180cm zooming range and continuous depth cues. This method may provide a promising solution in future 3D augmented reality (AR) realization.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Vol. 26, Issue 8, pp. 10140- 10151 (2018)
DOI: 10.1364/OE.26.010140