Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms

Author(s):

Liu, Tsung-Li and Upadhyayula, Srigokul and Milkie, Daniel E. and Singh, Ved and Wang, Kai and Swinburne, Ian A. and Mosaliganti, Kishore R. and Collins, Zach M. and Hiscock, Tom W. and Shea, Jamien and Kohrman, Abraham Q. and Medwig, Taylor N. and Dambournet, Daphne and Forster, Ryan and Cunniff, Brian and Ruan, Yuan and Yashiro, Hanako and Scholpp, Steffen and Meyerowitz, Elliot M. and Hockemeyer, Dirk and Drubin, David G. and Martin, Benjamin L. and Matus, David Q. and Koyama, Minoru and Megason, Sean G. and Kirchhausen, Tom and Betzig, Eric

Abstract:

“True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.”

Link to Publications Page

Publication: Science
Issue/Year: Science, Vol. 360, Issue 6386, (2018)
DOI: 10.1126/science.aaq1392

Generation of optical vortex array along arbitrary curvilinear arrangement

Author(s):

Lin Li and Chenliang Chang and Xiangzheng Yuan and Caojin Yuan and Shaotong Feng and Shouping Nie and Jianping Ding

Abstract:

“We propose an approach for creating optical vortex array (OVA) arranged along arbitrary curvilinear path, based on the coaxial interference of two width-controllable component curves calculated by modified holographic beam shaping technique. The two component curve beams have different radial dimensions as well as phase gradients along each beam such that the number of phase singularity in the curvilinear arranged optical vortex array (CA-OVA) is freely tunable on demand. Hybrid CA-OVA that comprises of multiple OVA structures along different respective curves is also discussed and demonstrated. Furthermore, we study the conversion of CA-OVA into vector mode that comprises of polarization vortex array with varied polarization state distribution. Both simulation and experimental results prove the performance of the proposed method of generating a complex structured vortex array, which is of significance for potential applications including multiple trapping of micro-sized particles.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Vol.26, Issue 8, pp. 9798- 9812 (2018)
DOI: 10.1364/OE.26.009798

Lensless Stokes holography with the Hanbury Brown-Twiss approach

Author(s):

Darshika Singh and Rakesh Kumar Singh

Abstract:

“The recording and reconstruction of the Stokes parameter is of paramount importance for the description of the vectorial interference of light. Polarization holography provides a complete vectorial wavefront, however, direct recording and reconstruction of the hologram is not possible in a situation where the object is located behind the random scattering layer. The Stokes holography plays an important role in such situations and makes use of the Fourier transform relation between the Stokes parameters (SPs) at the scattering plane and the generalized Stokes parameters (GSPs) of the random field. In this paper, we propose and experimentally demonstrate the Stokes holography with the Hanbury Brown-Twiss (HBT) interferometer. We also propose and implement a lensless Fourier configuration for the Stokes holography. This permits us to reconstruct the wavefront from the GSPs at any arbitrary distance from the scattering plane. The application of the proposed technique is experimentally demonstrated for the 3D imaging of two different objects lying behind the random scattering medium. Depth information of the 3D objects is obtained by digitally propagating the generalized Stokes parameters to a different longitudinal distance. The quality of the reconstruction is assessed by measuring the overall visibility, efficiency, and PSNR of the reconstruction parameters.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Vol. 26, Issue 8, pp. 10801-10812 (2018)
DOI: 10.1364/OE.26.010801

Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm

Author(s):

Peng Sun and Shengqian Chang and Siqi Liu and Xiao Tao and Chang Wang and Zhenrong Zheng

Abstract:

“In this paper, a method is proposed to implement noises reduced three-dimensional (3D) holographic near-eye display by phase-only computer-generated hologram (CGH). The CGH is calculated from a double-convergence light Gerchberg-Saxton (GS) algorithm, in which the phases of two virtual convergence lights are introduced into GS algorithm simultaneously. The first phase of convergence light is a replacement of random phase as the iterative initial value and the second phase of convergence light will modulate the phase distribution calculated by GS algorithm. Both simulations and experiments are carried out to verify the feasibility of the proposed method. The results indicate that this method can effectively reduce the noises in the reconstruction. Field of view (FOV) of the reconstructed image reaches 40 degrees and experimental light path in the 4-f system is shortened. As for 3D experiments, the results demonstrate that the proposed algorithm can present 3D images with 180cm zooming range and continuous depth cues. This method may provide a promising solution in future 3D augmented reality (AR) realization.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Vol. 26, Issue 8, pp. 10140- 10151 (2018)
DOI: 10.1364/OE.26.010140

Lateral position correction in ptychography using the gradient of intensity patterns

Author(s):

Priya Dwivedi and Sander Konijnenberg and Silvania Pereira and Paul Urbach

Abstract:

“Ptychography, a form of Coherent Diffractive Imaging, is used with short wavelengths (e.g. X-rays, electron beams) to achieve high-resolution image reconstructions. One of the limiting factors for the reconstruction quality is the accurate knowledge of the illumination probe positions. Recently, many advances have been made to relax the requirement for the probe positions accuracy. Here, we analyse and demonstrate a straightforward approach that can be used to correct the probe positions with sub-pixel accuracy. Simulations and experimental results with visible light are presented in this work.”

Link to Publications Page

Publication: Ultramicroscopy
Issue/Year: Ultramicroscopy, Volume 192, September 2018, Pages 29-36
DOI: 10.1016/j.ultramic.2018.04.004

Non-iterative method for phase retrieval and coherence characterization by focus variation using a fixed star-shaped mask

Author(s):

A. P. Konijnenberg and Xingyuan Lu and Leixin Liu and W. M. J. Coene and Chengliang Zhao and H. P. Urbach

Abstract:

“A novel non-iterative phase retrieval method is proposed and demonstrated with a proof-of-principle experiment. The method uses a fixed specially designed mask and through-focus intensity measurements. It is demonstrated that this method is robust to spatial partial coherence in the illumination, making it suitable for coherent diffractive imaging using spatially partially coherent light, as well as for coherence characterization.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express, Vol. 26, Issue 7, pp. 9332- 9343 (2018)
DOI: 10.1364/OE.26.009332

Imaging carrier diffusion in perovskites with a diffractive optic-based transient absorption microscope

Author(s):

Guo, Zhenkun; Zhou, Ninghao; Williams, Olivia F.; Hu, Jun; You, Wei & Moran, Andrew M.

Abstract:

“Carrier diffusion is imaged in a perovskite film and crystal using a newly developed transient absorption microscope. Wide-field imaging is combined with a diffractive optic-based beam geometry to conduct 41 transient absorption experiments in parallel in this experimental setup. This configuration allows statistics to be quickly compiled with a 1 kHz laser system. Diffusion coefficients of 0.01 and 0.20 cm2/s are obtained for the methylammonium lead iodide film and crystal, respectively. Our data suggest that the dynamics in the film are dominated by intensity dependence of the carrier lifetimes as opposed to carrier diffusion. The small diffusion coefficients determined in the film are attributed to the presence of grain boundaries.”

Link to Publications Page

Publication: The Journal of Physical Chemistry C
Issue/Year: The Journal of Physical Chemistry C, Volume 122; Number 19; Pages 10650–10656; 2018
DOI: 10.1021/acs.jpcc.8b03643.