Tailoring arbitrary hybrid Poincaré beams through a single hologram

Author(s):

Shiyao Fu and Yanwang Zhai and Tonglu Wang and Ci Yin and Chunqing Gao

Abstract:

“Hybrid Poincaré beams (HPBs) are a kind of structure field with anisotropic polarizations. Here, we demonstrate an approach to tailor HPBs with arbitrary states, through encoding a single hologram on a liquid-crystal display device along with a stable optical system. The state of the obtained HPB is determined only by the encoded holograms with special design, which means it is not necessary to adjust any optical elements or hardware when generating various HPB states. Moreover, perfect HPBs can also be generated through the proposed scheme. In the experiment, the obtained HPBs are analyzed through a polarizer and a special parameter S3/S0, showing good agreement with prediction. This work opens an insight in encoding single holograms for tailoring arbitrary HPBs and inspires various applications.”

Link to Publications Page

Publication: Applied Physics Letters
Issue/Year: Applied Physics Letters Volume 111, Issue 21
DOI: 10.1063/1.5008954

Binary phase masks for easy system alignment and basic aberration sensing with spatial light modulators in STED microscopy

Author(s):

Klauss, André and Conrad, Florian and Hille, Carsten Hille

Abstract:

“The use of binary phase patterns to improve the integration and optimization of spatial light modulators (SLM) in an imaging system, especially a confocal microscope, is proposed and demonstrated. The phase masks were designed to create point spread functions (PSF), which exhibit specific sensitivity to major disturbances in the optical system. This allows direct evaluation of misalignment and fundamental aberration modes by simple visual inspection of the focal intensity distribution or by monitoring the central intensity of the PSF. The use of proposed phase masks is investigated in mathematical modelling and experiment for the use in a stimulated emission depletion (STED) microscope applying wavefront shaping by a SLM. We demonstrate the applicability of these phase masks for modal wavefront sensing of low order aberration modes up to the third order of Zernike polynomials, utilizing the point detector of a confocal microscope in a ‘guide star’ approach. A lateral resolution of ~25 nm is shown in STED imaging of the confocal microscope retrofitted with a SLM and a STED laser and binary phase mask based system optimization.”

Link to Publications Page

Publication: Scientific Reports
Issue/Year: Scientific Reports Volume 7, Article number: 15699 (2017)
DOI: 10.1038/s41598-017-15967-5

Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics

Author(s):

Liang Shi and Fu-Chung Huang and Ward Lopes and Wojciech Matusik and David Luebke

Abstract:

“Holograms display a 3D image in high resolution and allow viewers to focus freely as if looking through a virtual window, yet computer generated holography (CGH) hasn’t delivered the same visual quality under plane wave illumination and due to heavy computational cost. Light field displays have been popular due to their capability to provide continuous focus cues. However, light field displays must trade off between spatial and angular resolution, and do not model diffraction.

We present a light field-based CGH rendering pipeline allowing for reproduction of high-definition 3D scenes with continuous depth and support of intra-pupil view-dependent occlusion. Our rendering accurately accounts for diffraction and supports various types of reference illuminations for hologram. We avoid under- and over-sampling and geometric clipping effects seen in previous work. We also demonstrate an implementation of light field rendering plus the Fresnel diffraction integral based CGH calculation which is orders of magnitude faster than the state of the art [Zhang et al. 2015], achieving interactive volumetric 3D graphics.

To verify our computational results, we build a see-through, near-eye, color CGH display prototype which enables co-modulation of both amplitude and phase. We show that our rendering accurately models the spherical illumination introduced by the eye piece and produces the desired 3D imagery at the designated depth. We also analyze aliasing, theoretical resolution limits, depth of field, and other design trade-offs for near-eye CGH.”

Link to Publications Page

Publication: {ACM} Transactions on Graphics
Issue/Year: ACM Transactions on Graphics, Vol. 36, No. 6, Article 236. (November 2017)
DOI: 10.1145/3130800.3130832