Real and virtual propagation dynamics of angular accelerating white light beams

Author(s):

Christian Vetter and Angela Dudley and Alexander Szameit and Andrew Forbes

Abstract:

“Accelerating waves have received significant attention of late, first in the optical domain and later in the form of electron matter waves, and have found numerous applications in non-linear optics, material processing, microscopy, particle manipulation and laser plasma interactions. Here we create angular accelerating light beams with a potentially unlimited acceleration rate. By employing wavelength independent digital holograms for the creation and propagation of white light beams, we are able to study the resulting propagation in real and virtual space. We find that dephasing occurs for real propagation and that this can be compensated for in a virtual propagation scheme when single plane dynamics are important. Our work offers new insights into the propagation dynamics of such beams and provides a versatile tool for further investigations into propagating structured light fields.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express Vol. 25, Issue 17, pp. 20530-20540 (2017)
DOI: 10.1364/OE.25.020530

Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions

Author(s):

Shiyao Fu and Tonglu Wang and Zheyuan Zhang and Yanwang Zhai and Chunqing Gao

Abstract:

“Bessel-Gauss beams carrying orbital angular momentum are widely known for their non-diffractive or self-reconstructing performance, and have been applied in lots of domains. Here we demonstrate that, by illuminating a rotating object with high-order Bessel-Gauss beams, a frequency shift proportional to the rotating speed and the topological charge is observed. Moreover, the frequency shift is still present once an obstacle exists in the path, in spite of the decreasing of received signals. Our work indicates the feasibility of detecting rotating objects free of obstructions, and has potential as obstruction-immune rotation sensors in engine monitoring, aerological sounding, and so on.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express , Vol. 25, Issue 17, pp. 20098- 20108 (2018)
DOI: 10.1364/OE.25.020098

Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions

Author(s):

Shiyao Fu and Tonglu Wang and Zheyuan Zhang and Yanwang Zhai and Chunqing Gao

Abstract:

“Bessel-Gauss beams carrying orbital angular momentum are widely known for their non-diffractive or self-reconstructing performance, and have been applied in lots of domains. Here we demonstrate that, by illuminating a rotating object with high-order Bessel- Gauss beams, a frequency shift proportional to the rotating speed and the topological charge is observed. Moreover, the frequency shift is still present once an obstacle exists in the path, in spite of the decreasing of received signals. Our work indicates the feasibility of detecting rotating objects free of obstructions, and has potential as obstruction-immune rotation sensors in engine monitoring, aerological sounding, and so on.”

Link to Publications Page

Publication: Optics Express
Issue/Year: Optics Express Volume 25, Issue 17 pp. 20098-20108 (2017)
DOI: 10.1364/oe.25.020098