Optically driven pumps and flow sensors for microfluidic systems

Author(s): H Mushfique, J Leach, R Di Leonardo, M J Padgett, J M Cooper

Abstract:

“This paper describes techniques for generating and measuring fluid flow in microfluidic devices. The first technique is for the multi-point measurement of fluid flow in microscopic geometries. The flow sensing method uses an array of optically trapped microprobe sensors to map out the fluid flow. The optical traps are alternately turned on and off such that the probe particles are displaced by the flow of the surrounding fluid and then retrapped. The particles’ displacements are monitored by digital video microscopy and directly converted into velocity field values. The second is a method for generating flow within a microfluidic channel using an optically driven pump. The optically driven pump consists of two counter-rotating birefringent vaterite particles trapped within a microfluidic channel and driven using optical tweezers. The transfer of spin angular momentum from a circularly polarized laser beam causes the particles to rotate at up to 10 Hz. The pump is shown to be able to displace fluid in microchannels, with flow rates of up to 200 m-3 s-1 (200 fL s-1). In addition a flow sensing method, based upon the technique mentioned above, is incorporated into the system in order to map the magnitude and direction of fluid flow within the channel.”

Link to Publications Page

Publication: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Issue/Year: Journal of Mechanical Engineering Science, Volume 222, Number 5 / 2008, Pages 829-837
DOI: 10.1243/09544062JMES760