Scattered light fluorescence microscopy in three dimensions

Author(s): Giulia Ghielmetti and Christof M. Aegerter Abstract: “Recently, we have proposed a method to image fluorescent structures behind turbid layers at diffraction limited resolution using wave-front shaping and the memory effect. However, this was limited to a raster scanning of the wave-front shaped focus to a two dimensional plane. In applications, it can however be of great importance to be able to scan a three dimensional volume. Here we show that this can be implemented in the same setup. This is achieved by the addition of a parabolic phase shift to the shaped wave-front. Via the memory effect, this…

Pure two-dimensional polarization patterns for holographic recording

Author(s): Ulises Ruiz, Clementina Provenzano, Pasquale Pagliusi, and Gabriella Cipparrone Abstract: “Two-dimensional (2D) polarization patterns are achieved by the interference of two pairs of beams with perpendicular planes of incidence and orthogonal polarizations (i.e. linear or circular). In both cases, imposing a phase shift of π/2 between consecutive beams contains the amplitude modulation of the optical field in the superposition region and, thus, pure 2D polarization patterns are created. The recording of these interference fields in a polarization-sensitive material, namely an amorphous azopolymer, creates reconfigurable 2D periodic microstructures with peculiar diffraction properties.” Link to Publications Page Publication: Optics Letters, (subscription…

Fabrication of three-dimensional electrospun microstructures using phase modulated femtosecond laser pulses

Author(s): Nathan J. Jenness, Yiquan Wu, Robert L. Clark. Abstract: “Electrospun polycaprolactone nanofibers were selectively ablated to form microstructures via the phase modulation of femtosecond laser beams. Ablation width (1–15 μm) and depth (15–110 μm) resolution were dependent upon the selection of pulse energy and microscope objective. Because phase modulation shapes light in a maskless fashion, desired templates were digitally created and physically transferred to electrospun mats within a matter of minutes. Several microarchitectures were formed in parallel by dividing pulse energy between multiple foci, substantially increasing throughput. The data presented herein demonstrates that phase-based laser ablation can be used…

Binocular adaptive optics vision analyzer with full control over the complex pupil functions

Author(s): Christina Schwarz, Pedro M. Prieto, Enrique J. Fernández, and Pablo Artal Abstract: “We present a binocular adaptive optics vision analyzer fully capable of controlling both amplitude and phase of the two complex pupil functions in each eye of the subject. A special feature of the instrument is its comparatively simple setup. A single reflective liquid crystal on silicon spatial light modulator working in pure phase modulation generates the phase profiles for both pupils simultaneously. In addition, another liquid crystal spatial light modulator working in transmission operates in pure intensity modulation to produce a large variety of pupil masks for…

Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator

Author(s): Shaun D. Gittard, Alexander Nguyen, Kotaro Obata, Anastasia Koroleva, Roger J. Narayan, and Boris N. Chichkov. Abstract: “Two-photon polymerization is an appealing technique for producing microscale devices due to its flexibility in producing structures with a wide range of geometries as well as its compatibility with materials suitable for biomedical applications. The greatest limiting factor in widespread use of two-photon polymerization is the slow fabrication times associated with line-by-line, high-resolution structuring. In this study, a recently developed technology was used to produce microstructures by two-photon polymerization with multiple foci, which significantly reduces the production time. Computer generated hologram pattern…

Photo-designed terahertz devices

Author(s): Takanori Okada & Koichiro Tanaka Abstract: “Technologies are being developed to manipulate electromagnetic waves using artificially structured materials such as photonic crystals and metamaterials, with the goal of creating primary optical devices. For example, artificial metallic periodic structures show potential for the construction of devices operating in the terahertz frequency regime. Here we demonstrate the fabrication of photo-designed terahertz devices that enable the real-time, wide-range frequency modulation of terahertz electromagnetic waves. These devices are comprised of a photo-induced, planar periodic-conductive structure formed by the irradiation of a silicon surface using a spatially modulated, femtosecond optical pulsed laser. We also…

Positional stability of holographic optical traps

Author(s): Arnau Farré, Marjan Shayegan, Carol López-Quesada, Gerhard A. Blab, Mario Montes-Usategui, Nancy R. Forde, and Estela Martín-Badosa Abstract: “The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern. We have investigated the performance of both an analog-addressed and a digitally-addressed SLM, measuring the phase fluctuations of the modulated beam and evaluating…

Coaxial holographic encoding based on pure phase modulation

Author(s): Wei Jia, Zhongyu Chen, Fung Jacky Wen, Changhe Zhou, Yuk Tak Chow, and Po Sheun Chung Abstract: “We describe a simple technique for coaxial holographic image recording and reconstruction, employing a spatial light modulator (SLM) modified in pure phase mode. In the image encoding system, both the reference beam in the outside part and the signal beam in the inside part are displayed by an SLM based on the twisted nematic LCD. For a binary image, the part with amplitude of “1” is modulated with random phase, while the part with amplitude of “0” is modulated with constant phase….

Closed-loop adaptive optics with a single element for wavefront sensing and correction

Author(s): Raúl Martínez-Cuenca, Vicente Durán, Justo Arines, Jorge Ares, Zbigniew Jaroszewicz, Salvador Bará, Lluís Martínez-León, and Jesús Lancis Abstract: “We propose a closed-loop adaptive optical arrangement based on a single spatial light modulator that simultaneously works as a correction unit and as the key element of a wavefront sensor. This is possible by using a liquid crystal on silicon display whose active area is divided into two halves that are respectively programmed for sensing and correction. We analyze the performance of this architecture to implement an adaptive optical system. Results showing a closed-loop operation are reported, as well as a…

Controlling ghost traps in holographic optical tweezers

Author(s): Christina Hesseling, Mike Woerdemann, Andreas Hermerschmidt, Cornelia Denz. Abstract: “Computer-generated holograms displayed by phase-modulating spatial light modulators have become a well- established tool for beam shaping purposes in holographic optical tweezers. Still, the generation of light intensity patterns with high spatial symmetry and simultaneously without interfering ghost traps is a challenge. We have implemented an iterative Fourier transform algorithm that is capable of controlling these ghost traps and demonstrate the benefit of this approach in the experiment.” Link to Publications Page Publication: Optics Letters, (subscription required) Issue/Year/DOI: Optics Letters, Vol. 36, Issue 18, pp. 3657-3659 (2011) doi:10.1364/OL.36.003657